| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | umgr2adedgwlk.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | umgr2adedgwlk.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 4 |  | umgr2adedgwlk.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 5 |  | umgr2adedgwlk.g | ⊢ ( 𝜑  →  𝐺  ∈  UMGraph ) | 
						
							| 6 |  | umgr2adedgwlk.a | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 7 |  | umgr2adedgwlk.j | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 } ) | 
						
							| 8 |  | umgr2adedgwlk.k | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐾 )  =  { 𝐵 ,  𝐶 } ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | umgr2adedgwlk | ⊢ ( 𝜑  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) ) ) | 
						
							| 10 |  | simp1 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) )  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 11 |  | id | ⊢ ( ( 𝑃 ‘ 0 )  =  𝐴  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 12 | 11 | eqcoms | ⊢ ( 𝐴  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 2  =  ( ♯ ‘ 𝐹 )  →  ( 𝑃 ‘ 2 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 16 | 15 | eqcoms | ⊢ ( ( ♯ ‘ 𝐹 )  =  2  →  ( 𝑃 ‘ 2 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( ( ♯ ‘ 𝐹 )  =  2  →  ( ( 𝑃 ‘ 2 )  =  𝐶  ↔  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 18 | 17 | biimpcd | ⊢ ( ( 𝑃 ‘ 2 )  =  𝐶  →  ( ( ♯ ‘ 𝐹 )  =  2  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 19 | 18 | eqcoms | ⊢ ( 𝐶  =  ( 𝑃 ‘ 2 )  →  ( ( ♯ ‘ 𝐹 )  =  2  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) )  →  ( ( ♯ ‘ 𝐹 )  =  2  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 21 | 20 | com12 | ⊢ ( ( ♯ ‘ 𝐹 )  =  2  →  ( ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( ♯ ‘ 𝐹 )  =  2  →  ( ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) ) | 
						
							| 23 | 22 | 3imp | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) | 
						
							| 24 | 10 14 23 | 3jca | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) )  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 25 | 9 24 | syl | ⊢ ( 𝜑  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) | 
						
							| 26 |  | 3anass | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( 𝐺  ∈  UMGraph  ∧  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 27 | 5 6 26 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 28 | 1 | umgr2adedgwlklem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 29 |  | 3simpb | ⊢ ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 31 | 27 28 30 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 32 |  | 3anass | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  ↔  ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 33 | 5 31 32 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐺  ∈  UMGraph  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 34 |  | s2cli | ⊢ 〈“ 𝐽 𝐾 ”〉  ∈  Word  V | 
						
							| 35 | 3 34 | eqeltri | ⊢ 𝐹  ∈  Word  V | 
						
							| 36 |  | s3cli | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  Word  V | 
						
							| 37 | 4 36 | eqeltri | ⊢ 𝑃  ∈  Word  V | 
						
							| 38 | 35 37 | pm3.2i | ⊢ ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) | 
						
							| 39 |  | id | ⊢ ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 40 | 39 | 3adant1 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 41 | 40 | anim1i | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 43 | 42 | iswlkon | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) )  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  Word  V  ∧  𝑃  ∈  Word  V ) )  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) ) | 
						
							| 45 | 33 38 44 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐶 ) ) ) | 
						
							| 46 | 25 45 | mpbird | ⊢ ( 𝜑  →  𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 ) |