| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgr2adedgwlk.e |
|- E = ( Edg ` G ) |
| 2 |
|
umgr2adedgwlk.i |
|- I = ( iEdg ` G ) |
| 3 |
|
umgr2adedgwlk.f |
|- F = <" J K "> |
| 4 |
|
umgr2adedgwlk.p |
|- P = <" A B C "> |
| 5 |
|
umgr2adedgwlk.g |
|- ( ph -> G e. UMGraph ) |
| 6 |
|
umgr2adedgwlk.a |
|- ( ph -> ( { A , B } e. E /\ { B , C } e. E ) ) |
| 7 |
|
umgr2adedgwlk.j |
|- ( ph -> ( I ` J ) = { A , B } ) |
| 8 |
|
umgr2adedgwlk.k |
|- ( ph -> ( I ` K ) = { B , C } ) |
| 9 |
1 2 3 4 5 6 7 8
|
umgr2adedgwlk |
|- ( ph -> ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) ) |
| 10 |
|
simp1 |
|- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> F ( Walks ` G ) P ) |
| 11 |
|
id |
|- ( ( P ` 0 ) = A -> ( P ` 0 ) = A ) |
| 12 |
11
|
eqcoms |
|- ( A = ( P ` 0 ) -> ( P ` 0 ) = A ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( P ` 0 ) = A ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> ( P ` 0 ) = A ) |
| 15 |
|
fveq2 |
|- ( 2 = ( # ` F ) -> ( P ` 2 ) = ( P ` ( # ` F ) ) ) |
| 16 |
15
|
eqcoms |
|- ( ( # ` F ) = 2 -> ( P ` 2 ) = ( P ` ( # ` F ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( ( # ` F ) = 2 -> ( ( P ` 2 ) = C <-> ( P ` ( # ` F ) ) = C ) ) |
| 18 |
17
|
biimpcd |
|- ( ( P ` 2 ) = C -> ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = C ) ) |
| 19 |
18
|
eqcoms |
|- ( C = ( P ` 2 ) -> ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = C ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = C ) ) |
| 21 |
20
|
com12 |
|- ( ( # ` F ) = 2 -> ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( P ` ( # ` F ) ) = C ) ) |
| 22 |
21
|
a1i |
|- ( F ( Walks ` G ) P -> ( ( # ` F ) = 2 -> ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( P ` ( # ` F ) ) = C ) ) ) |
| 23 |
22
|
3imp |
|- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> ( P ` ( # ` F ) ) = C ) |
| 24 |
10 14 23
|
3jca |
|- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) |
| 25 |
9 24
|
syl |
|- ( ph -> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) |
| 26 |
|
3anass |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) |
| 27 |
5 6 26
|
sylanbrc |
|- ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) ) |
| 28 |
1
|
umgr2adedgwlklem |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
| 29 |
|
3simpb |
|- ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
| 30 |
29
|
adantl |
|- ( ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
| 31 |
27 28 30
|
3syl |
|- ( ph -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
| 32 |
|
3anass |
|- ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) <-> ( G e. UMGraph /\ ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
| 33 |
5 31 32
|
sylanbrc |
|- ( ph -> ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
| 34 |
|
s2cli |
|- <" J K "> e. Word _V |
| 35 |
3 34
|
eqeltri |
|- F e. Word _V |
| 36 |
|
s3cli |
|- <" A B C "> e. Word _V |
| 37 |
4 36
|
eqeltri |
|- P e. Word _V |
| 38 |
35 37
|
pm3.2i |
|- ( F e. Word _V /\ P e. Word _V ) |
| 39 |
|
id |
|- ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
| 40 |
39
|
3adant1 |
|- ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
| 41 |
40
|
anim1i |
|- ( ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) ) |
| 42 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 43 |
42
|
iswlkon |
|- ( ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) |
| 44 |
41 43
|
syl |
|- ( ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) |
| 45 |
33 38 44
|
sylancl |
|- ( ph -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) |
| 46 |
25 45
|
mpbird |
|- ( ph -> F ( A ( WalksOn ` G ) C ) P ) |