Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisn2 | ⊢ ∪ { 𝐴 } ∈ { ∅ , 𝐴 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unisng | ⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } = 𝐴 ) | |
| 2 | prid2g | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { ∅ , 𝐴 } ) | |
| 3 | 1 2 | eqeltrd | ⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } ∈ { ∅ , 𝐴 } ) | 
| 4 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 5 | 4 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) | 
| 6 | 5 | unieqd | ⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } = ∪ ∅ ) | 
| 7 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | 8 | prid1 | ⊢ ∅ ∈ { ∅ , 𝐴 } | 
| 10 | 7 9 | eqeltri | ⊢ ∪ ∅ ∈ { ∅ , 𝐴 } | 
| 11 | 6 10 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } ∈ { ∅ , 𝐴 } ) | 
| 12 | 3 11 | pm2.61i | ⊢ ∪ { 𝐴 } ∈ { ∅ , 𝐴 } |