| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 3 |
|
ssun1 |
⊢ ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 4 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
| 5 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 6 |
5
|
simpri |
⊢ Lim dom 𝑅1 |
| 7 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
| 8 |
6 7
|
ax-mp |
⊢ Ord dom 𝑅1 |
| 9 |
|
rankdmr1 |
⊢ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 |
| 10 |
|
ordunel |
⊢ ( ( Ord dom 𝑅1 ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) |
| 11 |
8 4 9 10
|
mp3an |
⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 |
| 12 |
|
r1ord3g |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) ) |
| 13 |
4 11 12
|
mp2an |
⊢ ( ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 14 |
3 13
|
ax-mp |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 15 |
2 14
|
sstrdi |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐴 ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 16 |
|
r1rankidb |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
| 18 |
|
ssun2 |
⊢ ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 19 |
|
r1ord3g |
⊢ ( ( ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ∧ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) ) |
| 20 |
9 11 19
|
mp2an |
⊢ ( ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 21 |
18 20
|
ax-mp |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 22 |
17 21
|
sstrdi |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐵 ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 23 |
15 22
|
unssd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 24 |
|
fvex |
⊢ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ∈ V |
| 25 |
24
|
elpw2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 26 |
23 25
|
sylibr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 27 |
|
r1sucg |
⊢ ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) = 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 28 |
11 27
|
ax-mp |
⊢ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) = 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 29 |
26 28
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 30 |
|
r1elwf |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 32 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 33 |
|
sswf |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 34 |
32 33
|
mpan2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 35 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 36 |
|
sswf |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) |
| 37 |
35 36
|
mpan2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) |
| 38 |
34 37
|
jca |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 39 |
31 38
|
impbii |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |