Metamath Proof Explorer


Theorem unwf

Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion unwf A R1 On B R1 On A B R1 On

Proof

Step Hyp Ref Expression
1 r1rankidb A R1 On A R1 rank A
2 1 adantr A R1 On B R1 On A R1 rank A
3 ssun1 rank A rank A rank B
4 rankdmr1 rank A dom R1
5 r1funlim Fun R1 Lim dom R1
6 5 simpri Lim dom R1
7 limord Lim dom R1 Ord dom R1
8 6 7 ax-mp Ord dom R1
9 rankdmr1 rank B dom R1
10 ordunel Ord dom R1 rank A dom R1 rank B dom R1 rank A rank B dom R1
11 8 4 9 10 mp3an rank A rank B dom R1
12 r1ord3g rank A dom R1 rank A rank B dom R1 rank A rank A rank B R1 rank A R1 rank A rank B
13 4 11 12 mp2an rank A rank A rank B R1 rank A R1 rank A rank B
14 3 13 ax-mp R1 rank A R1 rank A rank B
15 2 14 sstrdi A R1 On B R1 On A R1 rank A rank B
16 r1rankidb B R1 On B R1 rank B
17 16 adantl A R1 On B R1 On B R1 rank B
18 ssun2 rank B rank A rank B
19 r1ord3g rank B dom R1 rank A rank B dom R1 rank B rank A rank B R1 rank B R1 rank A rank B
20 9 11 19 mp2an rank B rank A rank B R1 rank B R1 rank A rank B
21 18 20 ax-mp R1 rank B R1 rank A rank B
22 17 21 sstrdi A R1 On B R1 On B R1 rank A rank B
23 15 22 unssd A R1 On B R1 On A B R1 rank A rank B
24 fvex R1 rank A rank B V
25 24 elpw2 A B 𝒫 R1 rank A rank B A B R1 rank A rank B
26 23 25 sylibr A R1 On B R1 On A B 𝒫 R1 rank A rank B
27 r1sucg rank A rank B dom R1 R1 suc rank A rank B = 𝒫 R1 rank A rank B
28 11 27 ax-mp R1 suc rank A rank B = 𝒫 R1 rank A rank B
29 26 28 eleqtrrdi A R1 On B R1 On A B R1 suc rank A rank B
30 r1elwf A B R1 suc rank A rank B A B R1 On
31 29 30 syl A R1 On B R1 On A B R1 On
32 ssun1 A A B
33 sswf A B R1 On A A B A R1 On
34 32 33 mpan2 A B R1 On A R1 On
35 ssun2 B A B
36 sswf A B R1 On B A B B R1 On
37 35 36 mpan2 A B R1 On B R1 On
38 34 37 jca A B R1 On A R1 On B R1 On
39 31 38 impbii A R1 On B R1 On A B R1 On