| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ UHGraph ) |
| 3 |
|
fveq2 |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 } → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = ( ♯ ‘ { 𝐴 } ) ) |
| 4 |
|
hashsng |
⊢ ( 𝐴 ∈ 𝑋 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| 5 |
3 4
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
| 7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 9 |
7 8
|
usgrislfuspgr |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 10 |
9
|
simprbi |
⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 12 |
|
eqid |
⊢ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
| 13 |
7 8 12
|
lfuhgr1v0e |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 14 |
2 6 11 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 15 |
|
uhgriedg0edg0 |
⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 16 |
1 15
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 19 |
18
|
ex |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |