Step |
Hyp |
Ref |
Expression |
1 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ UHGraph ) |
3 |
|
fveq2 |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 } → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = ( ♯ ‘ { 𝐴 } ) ) |
4 |
|
hashsng |
⊢ ( 𝐴 ∈ 𝑋 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
5 |
3 4
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
9 |
7 8
|
usgrislfuspgr |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
10 |
9
|
simprbi |
⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
12 |
|
eqid |
⊢ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
13 |
7 8 12
|
lfuhgr1v0e |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( Edg ‘ 𝐺 ) = ∅ ) |
14 |
2 6 11 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( Edg ‘ 𝐺 ) = ∅ ) |
15 |
|
uhgriedg0edg0 |
⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
16 |
1 15
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
18 |
14 17
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
19 |
18
|
ex |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |