Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrbisymrel.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
2 |
|
uspgrbisymrel.r |
⊢ 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑟 𝑦 ↔ 𝑦 𝑟 𝑥 ) } |
3 |
|
fvex |
⊢ ( Pairs ‘ 𝑉 ) ∈ V |
4 |
3
|
pwex |
⊢ 𝒫 ( Pairs ‘ 𝑉 ) ∈ V |
5 |
|
mptexg |
⊢ ( 𝒫 ( Pairs ‘ 𝑉 ) ∈ V → ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V ) |
6 |
4 5
|
mp1i |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V ) |
7 |
|
eqid |
⊢ 𝒫 ( Pairs ‘ 𝑉 ) = 𝒫 ( Pairs ‘ 𝑉 ) |
8 |
7 1
|
uspgrex |
⊢ ( 𝑉 ∈ 𝑊 → 𝐺 ∈ V ) |
9 |
|
mptexg |
⊢ ( 𝐺 ∈ V → ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ∈ V ) |
10 |
8 9
|
syl |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ∈ V ) |
11 |
|
coexg |
⊢ ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V ∧ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ∈ V ) → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) ∈ V ) |
12 |
6 10 11
|
syl2anc |
⊢ ( 𝑉 ∈ 𝑊 → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) ∈ V ) |
13 |
|
eqid |
⊢ ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) = ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) |
14 |
7 2 13
|
sprsymrelf1o |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝒫 ( Pairs ‘ 𝑉 ) –1-1-onto→ 𝑅 ) |
15 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) |
16 |
7 1 15
|
uspgrsprf1o |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) : 𝐺 –1-1-onto→ 𝒫 ( Pairs ‘ 𝑉 ) ) |
17 |
|
f1oco |
⊢ ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝒫 ( Pairs ‘ 𝑉 ) –1-1-onto→ 𝑅 ∧ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) : 𝐺 –1-1-onto→ 𝒫 ( Pairs ‘ 𝑉 ) ) → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) : 𝐺 –1-1-onto→ 𝑅 ) |
18 |
14 16 17
|
syl2anc |
⊢ ( 𝑉 ∈ 𝑊 → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) : 𝐺 –1-1-onto→ 𝑅 ) |
19 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) → ( 𝑓 : 𝐺 –1-1-onto→ 𝑅 ↔ ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) : 𝐺 –1-1-onto→ 𝑅 ) ) |
20 |
19
|
spcegv |
⊢ ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) ∈ V → ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ) : 𝐺 –1-1-onto→ 𝑅 → ∃ 𝑓 𝑓 : 𝐺 –1-1-onto→ 𝑅 ) ) |
21 |
12 18 20
|
sylc |
⊢ ( 𝑉 ∈ 𝑊 → ∃ 𝑓 𝑓 : 𝐺 –1-1-onto→ 𝑅 ) |