Metamath Proof Explorer


Theorem uspgrbisymrelALT

Description: Alternate proof of uspgrbisymrel not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses uspgrbisymrel.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
uspgrbisymrel.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
Assertion uspgrbisymrelALT ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑅 )

Proof

Step Hyp Ref Expression
1 uspgrbisymrel.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
2 uspgrbisymrel.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
3 fvex ( Pairs ‘ 𝑉 ) ∈ V
4 3 pwex 𝒫 ( Pairs ‘ 𝑉 ) ∈ V
5 mptexg ( 𝒫 ( Pairs ‘ 𝑉 ) ∈ V → ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V )
6 4 5 mp1i ( 𝑉𝑊 → ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V )
7 eqid 𝒫 ( Pairs ‘ 𝑉 ) = 𝒫 ( Pairs ‘ 𝑉 )
8 7 1 uspgrex ( 𝑉𝑊𝐺 ∈ V )
9 mptexg ( 𝐺 ∈ V → ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ∈ V )
10 8 9 syl ( 𝑉𝑊 → ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ∈ V )
11 coexg ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V ∧ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ∈ V ) → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) ∈ V )
12 6 10 11 syl2anc ( 𝑉𝑊 → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) ∈ V )
13 eqid ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) = ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } )
14 7 2 13 sprsymrelf1o ( 𝑉𝑊 → ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝒫 ( Pairs ‘ 𝑉 ) –1-1-onto𝑅 )
15 eqid ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
16 7 1 15 uspgrsprf1o ( 𝑉𝑊 → ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) : 𝐺1-1-onto→ 𝒫 ( Pairs ‘ 𝑉 ) )
17 f1oco ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝒫 ( Pairs ‘ 𝑉 ) –1-1-onto𝑅 ∧ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) : 𝐺1-1-onto→ 𝒫 ( Pairs ‘ 𝑉 ) ) → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) : 𝐺1-1-onto𝑅 )
18 14 16 17 syl2anc ( 𝑉𝑊 → ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) : 𝐺1-1-onto𝑅 )
19 f1oeq1 ( 𝑓 = ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) → ( 𝑓 : 𝐺1-1-onto𝑅 ↔ ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) : 𝐺1-1-onto𝑅 ) )
20 19 spcegv ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) ∈ V → ( ( ( 𝑝 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∘ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ) : 𝐺1-1-onto𝑅 → ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑅 ) )
21 12 18 20 sylc ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑅 )