Metamath Proof Explorer


Theorem wfrlem10

Description: Lemma for well-founded recursion. When z is an R minimal element of ( A \ dom F ) , then its predecessor class is equal to dom F . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem10.1 𝑅 We 𝐴
wfrlem10.2 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfrlem10 ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) = dom 𝐹 )

Proof

Step Hyp Ref Expression
1 wfrlem10.1 𝑅 We 𝐴
2 wfrlem10.2 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
3 2 wfrlem8 ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , dom 𝐹 , 𝑧 ) )
4 3 biimpi ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , dom 𝐹 , 𝑧 ) )
5 predss Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ⊆ dom 𝐹
6 5 a1i ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ⊆ dom 𝐹 )
7 simpr ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → 𝑤 ∈ dom 𝐹 )
8 eldifn ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 )
9 eleq1w ( 𝑤 = 𝑧 → ( 𝑤 ∈ dom 𝐹𝑧 ∈ dom 𝐹 ) )
10 9 notbid ( 𝑤 = 𝑧 → ( ¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹 ) )
11 8 10 syl5ibrcom ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹 ) )
12 11 con2d ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧 ) )
13 12 imp ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ¬ 𝑤 = 𝑧 )
14 ssel ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) → 𝑧 ∈ dom 𝐹 ) )
15 14 con3d ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 → ( ¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) )
16 8 15 syl5com ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) )
17 2 wfrdmcl ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 )
18 16 17 impel ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) )
19 eldifi ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧𝐴 )
20 elpredg ( ( 𝑤 ∈ dom 𝐹𝑧𝐴 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ↔ 𝑧 𝑅 𝑤 ) )
21 20 ancoms ( ( 𝑧𝐴𝑤 ∈ dom 𝐹 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ↔ 𝑧 𝑅 𝑤 ) )
22 19 21 sylan ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ↔ 𝑧 𝑅 𝑤 ) )
23 18 22 mtbid ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ¬ 𝑧 𝑅 𝑤 )
24 2 wfrdmss dom 𝐹𝐴
25 24 sseli ( 𝑤 ∈ dom 𝐹𝑤𝐴 )
26 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
27 1 26 ax-mp 𝑅 Or 𝐴
28 solin ( ( 𝑅 Or 𝐴 ∧ ( 𝑤𝐴𝑧𝐴 ) ) → ( 𝑤 𝑅 𝑧𝑤 = 𝑧𝑧 𝑅 𝑤 ) )
29 27 28 mpan ( ( 𝑤𝐴𝑧𝐴 ) → ( 𝑤 𝑅 𝑧𝑤 = 𝑧𝑧 𝑅 𝑤 ) )
30 25 19 29 syl2anr ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝑤 𝑅 𝑧𝑤 = 𝑧𝑧 𝑅 𝑤 ) )
31 13 23 30 ecase23d ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → 𝑤 𝑅 𝑧 )
32 vex 𝑤 ∈ V
33 32 elpred ( 𝑧 ∈ V → ( 𝑤 ∈ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ↔ ( 𝑤 ∈ dom 𝐹𝑤 𝑅 𝑧 ) ) )
34 33 elv ( 𝑤 ∈ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ↔ ( 𝑤 ∈ dom 𝐹𝑤 𝑅 𝑧 ) )
35 7 31 34 sylanbrc ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → 𝑤 ∈ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) )
36 6 35 eqelssd ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Pred ( 𝑅 , dom 𝐹 , 𝑧 ) = dom 𝐹 )
37 4 36 sylan9eqr ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) = dom 𝐹 )