| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-br |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ↔ 〈 𝐹 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( Walks ‘ 𝐺 ) ) |
| 2 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 3 |
|
wlklenvp1 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
| 4 |
2 3
|
jca |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 5 |
1 4
|
sylbir |
⊢ ( 〈 𝐹 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( Walks ‘ 𝐺 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 6 |
|
ccatws1len |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ↔ ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 8 |
|
eqcom |
⊢ ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ↔ ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 9 |
7 8
|
bitrdi |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ↔ ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ↔ ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 11 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
| 13 |
|
lencl |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 14 |
13
|
nn0cnd |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 16 |
|
1cnd |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 17 |
12 15 16
|
addcan2d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ↔ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
| 18 |
17
|
biimpd |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
| 19 |
10 18
|
sylbid |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
| 20 |
19
|
expimpd |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
| 21 |
5 20
|
syl5 |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 〈 𝐹 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( Walks ‘ 𝐺 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |