| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunnat.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 2 |
|
wunnat.2 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 3 |
|
wunnat.3 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
| 4 |
1 2 3
|
wunfunc |
⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) ∈ 𝑈 ) |
| 5 |
1 4 4
|
wunxp |
⊢ ( 𝜑 → ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ∈ 𝑈 ) |
| 6 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
| 7 |
6 1 3
|
wunstr |
⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) ∈ 𝑈 ) |
| 8 |
1 7
|
wunrn |
⊢ ( 𝜑 → ran ( Hom ‘ 𝐷 ) ∈ 𝑈 ) |
| 9 |
1 8
|
wununi |
⊢ ( 𝜑 → ∪ ran ( Hom ‘ 𝐷 ) ∈ 𝑈 ) |
| 10 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 11 |
10 1 2
|
wunstr |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ∈ 𝑈 ) |
| 12 |
1 9 11
|
wunmap |
⊢ ( 𝜑 → ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ∈ 𝑈 ) |
| 13 |
1 12
|
wunpw |
⊢ ( 𝜑 → 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ∈ 𝑈 ) |
| 14 |
|
fvex |
⊢ ( 1st ‘ 𝑓 ) ∈ V |
| 15 |
|
fvex |
⊢ ( 1st ‘ 𝑔 ) ∈ V |
| 16 |
|
ovex |
⊢ ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ∈ V |
| 17 |
|
ssrab2 |
⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ⊆ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) |
| 18 |
|
ovssunirn |
⊢ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ 𝐷 ) |
| 19 |
18
|
rgenw |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ 𝐷 ) |
| 20 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ 𝐷 ) → X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ ( Base ‘ 𝐶 ) ∪ ran ( Hom ‘ 𝐷 ) ) |
| 21 |
19 20
|
ax-mp |
⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ ( Base ‘ 𝐶 ) ∪ ran ( Hom ‘ 𝐷 ) |
| 22 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
| 23 |
|
fvex |
⊢ ( Hom ‘ 𝐷 ) ∈ V |
| 24 |
23
|
rnex |
⊢ ran ( Hom ‘ 𝐷 ) ∈ V |
| 25 |
24
|
uniex |
⊢ ∪ ran ( Hom ‘ 𝐷 ) ∈ V |
| 26 |
22 25
|
ixpconst |
⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ∪ ran ( Hom ‘ 𝐷 ) = ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 27 |
21 26
|
sseqtri |
⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 28 |
17 27
|
sstri |
⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ⊆ ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 29 |
16 28
|
elpwi2 |
⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 30 |
29
|
sbcth |
⊢ ( ( 1st ‘ 𝑔 ) ∈ V → [ ( 1st ‘ 𝑔 ) / 𝑠 ] { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 31 |
|
sbcel1g |
⊢ ( ( 1st ‘ 𝑔 ) ∈ V → ( [ ( 1st ‘ 𝑔 ) / 𝑠 ] { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ↔ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) ) |
| 32 |
30 31
|
mpbid |
⊢ ( ( 1st ‘ 𝑔 ) ∈ V → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 33 |
15 32
|
ax-mp |
⊢ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 34 |
33
|
sbcth |
⊢ ( ( 1st ‘ 𝑓 ) ∈ V → [ ( 1st ‘ 𝑓 ) / 𝑟 ] ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 35 |
|
sbcel1g |
⊢ ( ( 1st ‘ 𝑓 ) ∈ V → ( [ ( 1st ‘ 𝑓 ) / 𝑟 ] ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ↔ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) ) |
| 36 |
34 35
|
mpbid |
⊢ ( ( 1st ‘ 𝑓 ) ∈ V → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 37 |
14 36
|
ax-mp |
⊢ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 38 |
37
|
rgen2w |
⊢ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 39 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
| 40 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 41 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 42 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 43 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 44 |
39 40 41 42 43
|
natfval |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 45 |
44
|
fmpo |
⊢ ( ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ↔ ( 𝐶 Nat 𝐷 ) : ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ⟶ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 46 |
38 45
|
mpbi |
⊢ ( 𝐶 Nat 𝐷 ) : ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ⟶ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) : ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ⟶ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 48 |
1 5 13 47
|
wunf |
⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) ∈ 𝑈 ) |