| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ω )  →  𝑈  ∈  WUni ) | 
						
							| 3 | 1 | wunr1om | ⊢ ( 𝜑  →  ( 𝑅1  “  ω )  ⊆  𝑈 ) | 
						
							| 4 |  | r1funlim | ⊢ ( Fun  𝑅1  ∧  Lim  dom  𝑅1 ) | 
						
							| 5 | 4 | simpli | ⊢ Fun  𝑅1 | 
						
							| 6 | 4 | simpri | ⊢ Lim  dom  𝑅1 | 
						
							| 7 |  | limomss | ⊢ ( Lim  dom  𝑅1  →  ω  ⊆  dom  𝑅1 ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ω  ⊆  dom  𝑅1 | 
						
							| 9 |  | funimass4 | ⊢ ( ( Fun  𝑅1  ∧  ω  ⊆  dom  𝑅1 )  →  ( ( 𝑅1  “  ω )  ⊆  𝑈  ↔  ∀ 𝑥  ∈  ω ( 𝑅1 ‘ 𝑥 )  ∈  𝑈 ) ) | 
						
							| 10 | 5 8 9 | mp2an | ⊢ ( ( 𝑅1  “  ω )  ⊆  𝑈  ↔  ∀ 𝑥  ∈  ω ( 𝑅1 ‘ 𝑥 )  ∈  𝑈 ) | 
						
							| 11 | 3 10 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ω ( 𝑅1 ‘ 𝑥 )  ∈  𝑈 ) | 
						
							| 12 | 11 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ω )  →  ( 𝑅1 ‘ 𝑥 )  ∈  𝑈 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ω )  →  𝑥  ∈  ω ) | 
						
							| 14 | 8 13 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ω )  →  𝑥  ∈  dom  𝑅1 ) | 
						
							| 15 |  | onssr1 | ⊢ ( 𝑥  ∈  dom  𝑅1  →  𝑥  ⊆  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ω )  →  𝑥  ⊆  ( 𝑅1 ‘ 𝑥 ) ) | 
						
							| 17 | 2 12 16 | wunss | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ω )  →  𝑥  ∈  𝑈 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ω  →  𝑥  ∈  𝑈 ) ) | 
						
							| 19 | 18 | ssrdv | ⊢ ( 𝜑  →  ω  ⊆  𝑈 ) |