Metamath Proof Explorer


Theorem wunom

Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wun0.1 φUWUni
Assertion wunom φωU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 1 adantr φxωUWUni
3 1 wunr1om φR1ωU
4 r1funlim FunR1LimdomR1
5 4 simpli FunR1
6 4 simpri LimdomR1
7 limomss LimdomR1ωdomR1
8 6 7 ax-mp ωdomR1
9 funimass4 FunR1ωdomR1R1ωUxωR1xU
10 5 8 9 mp2an R1ωUxωR1xU
11 3 10 sylib φxωR1xU
12 11 r19.21bi φxωR1xU
13 simpr φxωxω
14 8 13 sselid φxωxdomR1
15 onssr1 xdomR1xR1x
16 14 15 syl φxωxR1x
17 2 12 16 wunss φxωxU
18 17 ex φxωxU
19 18 ssrdv φωU