| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhpsgnevpm.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
| 2 |
|
zrhpsgnevpm.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 3 |
|
zrhpsgnevpm.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
zrhpsgnodpm.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 5 |
|
zrhpsgnodpm.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
| 7 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 8 |
6 2 7
|
psgnghm2 |
⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 10 |
4 9
|
ghmf |
⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝑁 ∈ Fin → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 13 |
|
eldifi |
⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) → 𝐹 ∈ 𝑃 ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → 𝐹 ∈ 𝑃 ) |
| 15 |
|
fvco3 |
⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 17 |
6 4 2
|
psgnodpm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑆 ‘ 𝐹 ) = - 1 ) |
| 18 |
17
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑆 ‘ 𝐹 ) = - 1 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑌 ‘ - 1 ) ) |
| 20 |
1
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( ℤring RingHom 𝑅 ) ) |
| 21 |
|
rhmghm |
⊢ ( 𝑌 ∈ ( ℤring RingHom 𝑅 ) → 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 23 |
|
1z |
⊢ 1 ∈ ℤ |
| 24 |
23
|
a1i |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ℤ ) |
| 25 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 26 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
| 27 |
25 26 5
|
ghminv |
⊢ ( ( 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ∧ 1 ∈ ℤ ) → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) |
| 28 |
22 24 27
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) |
| 29 |
|
zringinvg |
⊢ ( 1 ∈ ℤ → - 1 = ( ( invg ‘ ℤring ) ‘ 1 ) ) |
| 30 |
23 29
|
ax-mp |
⊢ - 1 = ( ( invg ‘ ℤring ) ‘ 1 ) |
| 31 |
30
|
eqcomi |
⊢ ( ( invg ‘ ℤring ) ‘ 1 ) = - 1 |
| 32 |
31
|
fveq2i |
⊢ ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝑌 ‘ - 1 ) |
| 33 |
32
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝑌 ‘ - 1 ) ) |
| 34 |
1 3
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = 1 ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
| 36 |
28 33 35
|
3eqtr3d |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) = ( 𝐼 ‘ 1 ) ) |
| 37 |
36
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑌 ‘ - 1 ) = ( 𝐼 ‘ 1 ) ) |
| 38 |
16 19 37
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝐼 ‘ 1 ) ) |