Metamath Proof Explorer


Theorem zrhpsgnodpm

Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses zrhpsgnevpm.y Y=ℤRHomR
zrhpsgnevpm.s S=pmSgnN
zrhpsgnevpm.o 1˙=1R
zrhpsgnodpm.p P=BaseSymGrpN
zrhpsgnodpm.i I=invgR
Assertion zrhpsgnodpm RRingNFinFPpmEvenNYSF=I1˙

Proof

Step Hyp Ref Expression
1 zrhpsgnevpm.y Y=ℤRHomR
2 zrhpsgnevpm.s S=pmSgnN
3 zrhpsgnevpm.o 1˙=1R
4 zrhpsgnodpm.p P=BaseSymGrpN
5 zrhpsgnodpm.i I=invgR
6 eqid SymGrpN=SymGrpN
7 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
8 6 2 7 psgnghm2 NFinSSymGrpNGrpHommulGrpfld𝑠11
9 eqid BasemulGrpfld𝑠11=BasemulGrpfld𝑠11
10 4 9 ghmf SSymGrpNGrpHommulGrpfld𝑠11S:PBasemulGrpfld𝑠11
11 8 10 syl NFinS:PBasemulGrpfld𝑠11
12 11 3ad2ant2 RRingNFinFPpmEvenNS:PBasemulGrpfld𝑠11
13 eldifi FPpmEvenNFP
14 13 3ad2ant3 RRingNFinFPpmEvenNFP
15 fvco3 S:PBasemulGrpfld𝑠11FPYSF=YSF
16 12 14 15 syl2anc RRingNFinFPpmEvenNYSF=YSF
17 6 4 2 psgnodpm NFinFPpmEvenNSF=1
18 17 3adant1 RRingNFinFPpmEvenNSF=1
19 18 fveq2d RRingNFinFPpmEvenNYSF=Y1
20 1 zrhrhm RRingYringRingHomR
21 rhmghm YringRingHomRYringGrpHomR
22 20 21 syl RRingYringGrpHomR
23 1z 1
24 23 a1i RRing1
25 zringbas =Basering
26 eqid invgring=invgring
27 25 26 5 ghminv YringGrpHomR1Yinvgring1=IY1
28 22 24 27 syl2anc RRingYinvgring1=IY1
29 zringinvg 11=invgring1
30 23 29 ax-mp 1=invgring1
31 30 eqcomi invgring1=1
32 31 fveq2i Yinvgring1=Y1
33 32 a1i RRingYinvgring1=Y1
34 1 3 zrh1 RRingY1=1˙
35 34 fveq2d RRingIY1=I1˙
36 28 33 35 3eqtr3d RRingY1=I1˙
37 36 3ad2ant1 RRingNFinFPpmEvenNY1=I1˙
38 16 19 37 3eqtrd RRingNFinFPpmEvenNYSF=I1˙