Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin3ds | Unicode version |
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
isfin3ds.f |
Ref | Expression |
---|---|
isfin3ds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 4948 | . . . . . . . . 9 | |
2 | 1 | fveq2d 5875 | . . . . . . . 8 |
3 | fveq2 5871 | . . . . . . . 8 | |
4 | 2, 3 | sseq12d 3532 | . . . . . . 7 |
5 | 4 | cbvralv 3084 | . . . . . 6 |
6 | fveq1 5870 | . . . . . . . 8 | |
7 | fveq1 5870 | . . . . . . . 8 | |
8 | 6, 7 | sseq12d 3532 | . . . . . . 7 |
9 | 8 | ralbidv 2896 | . . . . . 6 |
10 | 5, 9 | syl5bb 257 | . . . . 5 |
11 | rneq 5233 | . . . . . . 7 | |
12 | 11 | inteqd 4291 | . . . . . 6 |
13 | 12, 11 | eleq12d 2539 | . . . . 5 |
14 | 10, 13 | imbi12d 320 | . . . 4 |
15 | 14 | cbvralv 3084 | . . 3 |
16 | pweq 4015 | . . . . 5 | |
17 | 16 | oveq1d 6311 | . . . 4 |
18 | 17 | raleqdv 3060 | . . 3 |
19 | 15, 18 | syl5bb 257 | . 2 |
20 | isfin3ds.f | . 2 | |
21 | 19, 20 | elab2g 3248 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442
A. wral 2807 C_ wss 3475 ~P cpw 4012
|^| cint 4286
suc csuc 4885
ran crn 5005 ` cfv 5593 (class class class)co 6296
com 6700
cmap 7439 |
This theorem is referenced by: ssfin3ds 8731 fin23lem17 8739 fin23lem39 8751 fin23lem40 8752 isf32lem12 8765 isfin3-3 8769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-suc 4889 df-cnv 5012 df-dm 5014 df-rn 5015 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |