MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0x Unicode version

Theorem ixp0x 7517
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
Assertion
Ref Expression
ixp0x

Proof of Theorem ixp0x
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfixp 7491 . 2
2 elsn 4043 . . . 4
3 fn0 5705 . . . 4
4 ral0 3934 . . . . 5
54biantru 505 . . . 4
62, 3, 53bitr2i 273 . . 3
76abbi2i 2590 . 2
81, 7eqtr4i 2489 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  A.wral 2807   c0 3784  {csn 4029  Fnwfn 5588  `cfv 5593  X_cixp 7489
This theorem is referenced by:  0elixp  7520  ptcmpfi  20314  finixpnum  30038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-fun 5595  df-fn 5596  df-ixp 7490
  Copyright terms: Public domain W3C validator