MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpf Unicode version

Theorem ixpf 7511
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf
Distinct variable groups:   ,   ,

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 7493 . 2
2 ssiun2 4373 . . . . . . 7
32sseld 3502 . . . . . 6
43ralimia 2848 . . . . 5
54anim2i 569 . . . 4
6 nfcv 2619 . . . . 5
7 nfiu1 4360 . . . . 5
8 nfcv 2619 . . . . 5
96, 7, 8ffnfvf 6058 . . . 4
105, 9sylibr 212 . . 3
11103adant1 1014 . 2
121, 11sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973  e.wcel 1818  A.wral 2807   cvv 3109  U_ciun 4330  Fnwfn 5588  -->wf 5589  `cfv 5593  X_cixp 7489
This theorem is referenced by:  uniixp  7512  ixpssmap2g  7518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-fv 5601  df-ixp 7490
  Copyright terms: Public domain W3C validator