Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpprc | Unicode version |
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain , which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
ixpprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 3795 | . . 3 | |
2 | ixpfn 7495 | . . . . 5 | |
3 | fndm 5685 | . . . . . 6 | |
4 | vex 3112 | . . . . . . 7 | |
5 | 4 | dmex 6733 | . . . . . 6 |
6 | 3, 5 | syl6eqelr 2554 | . . . . 5 |
7 | 2, 6 | syl 16 | . . . 4 |
8 | 7 | exlimiv 1722 | . . 3 |
9 | 1, 8 | sylbi 195 | . 2 |
10 | 9 | con1i 129 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 E. wex 1612 e. wcel 1818
cvv 3109
c0 3784 dom cdm 5004 Fn wfn 5588
X_ cixp 7489 |
This theorem is referenced by: ixpexg 7513 ixpssmap2g 7518 ixpssmapg 7519 resixpfo 7527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |