| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sq.1 |  |-  S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) | 
						
							| 2 |  | 2sqlem5.1 |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | 2sqlem5.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 4 |  | 2sqlem4.3 |  |-  ( ph -> A e. ZZ ) | 
						
							| 5 |  | 2sqlem4.4 |  |-  ( ph -> B e. ZZ ) | 
						
							| 6 |  | 2sqlem4.5 |  |-  ( ph -> C e. ZZ ) | 
						
							| 7 |  | 2sqlem4.6 |  |-  ( ph -> D e. ZZ ) | 
						
							| 8 |  | 2sqlem4.7 |  |-  ( ph -> ( N x. P ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 9 |  | 2sqlem4.8 |  |-  ( ph -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> N e. NN ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> P e. Prime ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> A e. ZZ ) | 
						
							| 13 | 5 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> B e. ZZ ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> C e. ZZ ) | 
						
							| 15 | 7 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> D e. ZZ ) | 
						
							| 16 | 8 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> ( N x. P ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 17 | 9 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> P || ( ( C x. B ) + ( A x. D ) ) ) | 
						
							| 19 | 1 10 11 12 13 14 15 16 17 18 | 2sqlem3 |  |-  ( ( ph /\ P || ( ( C x. B ) + ( A x. D ) ) ) -> N e. S ) | 
						
							| 20 | 2 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> N e. NN ) | 
						
							| 21 | 3 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> P e. Prime ) | 
						
							| 22 | 4 | znegcld |  |-  ( ph -> -u A e. ZZ ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> -u A e. ZZ ) | 
						
							| 24 | 5 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> B e. ZZ ) | 
						
							| 25 | 6 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> C e. ZZ ) | 
						
							| 26 | 7 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> D e. ZZ ) | 
						
							| 27 | 4 | zcnd |  |-  ( ph -> A e. CC ) | 
						
							| 28 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ph -> ( ( -u A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 31 | 8 30 | eqtr4d |  |-  ( ph -> ( N x. P ) = ( ( -u A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> ( N x. P ) = ( ( -u A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 33 | 9 | adantr |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) | 
						
							| 34 | 7 | zcnd |  |-  ( ph -> D e. CC ) | 
						
							| 35 | 27 34 | mulneg1d |  |-  ( ph -> ( -u A x. D ) = -u ( A x. D ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ph -> ( ( C x. B ) + ( -u A x. D ) ) = ( ( C x. B ) + -u ( A x. D ) ) ) | 
						
							| 37 | 6 5 | zmulcld |  |-  ( ph -> ( C x. B ) e. ZZ ) | 
						
							| 38 | 37 | zcnd |  |-  ( ph -> ( C x. B ) e. CC ) | 
						
							| 39 | 4 7 | zmulcld |  |-  ( ph -> ( A x. D ) e. ZZ ) | 
						
							| 40 | 39 | zcnd |  |-  ( ph -> ( A x. D ) e. CC ) | 
						
							| 41 | 38 40 | negsubd |  |-  ( ph -> ( ( C x. B ) + -u ( A x. D ) ) = ( ( C x. B ) - ( A x. D ) ) ) | 
						
							| 42 | 36 41 | eqtrd |  |-  ( ph -> ( ( C x. B ) + ( -u A x. D ) ) = ( ( C x. B ) - ( A x. D ) ) ) | 
						
							| 43 | 42 | breq2d |  |-  ( ph -> ( P || ( ( C x. B ) + ( -u A x. D ) ) <-> P || ( ( C x. B ) - ( A x. D ) ) ) ) | 
						
							| 44 | 43 | biimpar |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> P || ( ( C x. B ) + ( -u A x. D ) ) ) | 
						
							| 45 | 1 20 21 23 24 25 26 32 33 44 | 2sqlem3 |  |-  ( ( ph /\ P || ( ( C x. B ) - ( A x. D ) ) ) -> N e. S ) | 
						
							| 46 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 47 | 3 46 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 48 |  | zsqcl |  |-  ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) | 
						
							| 49 | 6 48 | syl |  |-  ( ph -> ( C ^ 2 ) e. ZZ ) | 
						
							| 50 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 51 | 49 50 | zmulcld |  |-  ( ph -> ( ( C ^ 2 ) x. N ) e. ZZ ) | 
						
							| 52 |  | zsqcl |  |-  ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) | 
						
							| 53 | 4 52 | syl |  |-  ( ph -> ( A ^ 2 ) e. ZZ ) | 
						
							| 54 | 51 53 | zsubcld |  |-  ( ph -> ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) e. ZZ ) | 
						
							| 55 |  | dvdsmul1 |  |-  ( ( P e. ZZ /\ ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) e. ZZ ) -> P || ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) | 
						
							| 56 | 47 54 55 | syl2anc |  |-  ( ph -> P || ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) | 
						
							| 57 | 6 4 | zmulcld |  |-  ( ph -> ( C x. A ) e. ZZ ) | 
						
							| 58 | 57 | zcnd |  |-  ( ph -> ( C x. A ) e. CC ) | 
						
							| 59 | 58 | sqcld |  |-  ( ph -> ( ( C x. A ) ^ 2 ) e. CC ) | 
						
							| 60 | 38 | sqcld |  |-  ( ph -> ( ( C x. B ) ^ 2 ) e. CC ) | 
						
							| 61 | 40 | sqcld |  |-  ( ph -> ( ( A x. D ) ^ 2 ) e. CC ) | 
						
							| 62 | 59 60 61 | pnpcand |  |-  ( ph -> ( ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) - ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) = ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) ) | 
						
							| 63 | 6 | zcnd |  |-  ( ph -> C e. CC ) | 
						
							| 64 | 63 27 | sqmuld |  |-  ( ph -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 65 | 5 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 66 | 63 65 | sqmuld |  |-  ( ph -> ( ( C x. B ) ^ 2 ) = ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 67 | 64 66 | oveq12d |  |-  ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) | 
						
							| 68 | 63 | sqcld |  |-  ( ph -> ( C ^ 2 ) e. CC ) | 
						
							| 69 | 53 | zcnd |  |-  ( ph -> ( A ^ 2 ) e. CC ) | 
						
							| 70 | 65 | sqcld |  |-  ( ph -> ( B ^ 2 ) e. CC ) | 
						
							| 71 | 68 69 70 | adddid |  |-  ( ph -> ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( C ^ 2 ) x. ( B ^ 2 ) ) ) ) | 
						
							| 72 | 67 71 | eqtr4d |  |-  ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) = ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 73 | 2 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 74 | 47 | zcnd |  |-  ( ph -> P e. CC ) | 
						
							| 75 | 73 74 | mulcomd |  |-  ( ph -> ( N x. P ) = ( P x. N ) ) | 
						
							| 76 | 8 75 | eqtr3d |  |-  ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( P x. N ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( ph -> ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( C ^ 2 ) x. ( P x. N ) ) ) | 
						
							| 78 | 68 74 73 | mul12d |  |-  ( ph -> ( ( C ^ 2 ) x. ( P x. N ) ) = ( P x. ( ( C ^ 2 ) x. N ) ) ) | 
						
							| 79 | 77 78 | eqtrd |  |-  ( ph -> ( ( C ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( P x. ( ( C ^ 2 ) x. N ) ) ) | 
						
							| 80 | 72 79 | eqtrd |  |-  ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) = ( P x. ( ( C ^ 2 ) x. N ) ) ) | 
						
							| 81 | 27 34 | sqmuld |  |-  ( ph -> ( ( A x. D ) ^ 2 ) = ( ( A ^ 2 ) x. ( D ^ 2 ) ) ) | 
						
							| 82 | 34 | sqcld |  |-  ( ph -> ( D ^ 2 ) e. CC ) | 
						
							| 83 | 69 82 | mulcomd |  |-  ( ph -> ( ( A ^ 2 ) x. ( D ^ 2 ) ) = ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 84 | 81 83 | eqtrd |  |-  ( ph -> ( ( A x. D ) ^ 2 ) = ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 85 | 64 84 | oveq12d |  |-  ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) ) | 
						
							| 86 | 49 | zcnd |  |-  ( ph -> ( C ^ 2 ) e. CC ) | 
						
							| 87 | 86 82 69 | adddird |  |-  ( ph -> ( ( ( C ^ 2 ) + ( D ^ 2 ) ) x. ( A ^ 2 ) ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) ) | 
						
							| 88 | 85 87 | eqtr4d |  |-  ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) x. ( A ^ 2 ) ) ) | 
						
							| 89 | 9 | oveq1d |  |-  ( ph -> ( P x. ( A ^ 2 ) ) = ( ( ( C ^ 2 ) + ( D ^ 2 ) ) x. ( A ^ 2 ) ) ) | 
						
							| 90 | 88 89 | eqtr4d |  |-  ( ph -> ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) = ( P x. ( A ^ 2 ) ) ) | 
						
							| 91 | 80 90 | oveq12d |  |-  ( ph -> ( ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) - ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) = ( ( P x. ( ( C ^ 2 ) x. N ) ) - ( P x. ( A ^ 2 ) ) ) ) | 
						
							| 92 | 51 | zcnd |  |-  ( ph -> ( ( C ^ 2 ) x. N ) e. CC ) | 
						
							| 93 | 74 92 69 | subdid |  |-  ( ph -> ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) = ( ( P x. ( ( C ^ 2 ) x. N ) ) - ( P x. ( A ^ 2 ) ) ) ) | 
						
							| 94 | 91 93 | eqtr4d |  |-  ( ph -> ( ( ( ( C x. A ) ^ 2 ) + ( ( C x. B ) ^ 2 ) ) - ( ( ( C x. A ) ^ 2 ) + ( ( A x. D ) ^ 2 ) ) ) = ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) | 
						
							| 95 | 62 94 | eqtr3d |  |-  ( ph -> ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) = ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) ) | 
						
							| 96 |  | subsq |  |-  ( ( ( C x. B ) e. CC /\ ( A x. D ) e. CC ) -> ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) = ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) | 
						
							| 97 | 38 40 96 | syl2anc |  |-  ( ph -> ( ( ( C x. B ) ^ 2 ) - ( ( A x. D ) ^ 2 ) ) = ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) | 
						
							| 98 | 95 97 | eqtr3d |  |-  ( ph -> ( P x. ( ( ( C ^ 2 ) x. N ) - ( A ^ 2 ) ) ) = ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) | 
						
							| 99 | 56 98 | breqtrd |  |-  ( ph -> P || ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) ) | 
						
							| 100 | 37 39 | zaddcld |  |-  ( ph -> ( ( C x. B ) + ( A x. D ) ) e. ZZ ) | 
						
							| 101 | 37 39 | zsubcld |  |-  ( ph -> ( ( C x. B ) - ( A x. D ) ) e. ZZ ) | 
						
							| 102 |  | euclemma |  |-  ( ( P e. Prime /\ ( ( C x. B ) + ( A x. D ) ) e. ZZ /\ ( ( C x. B ) - ( A x. D ) ) e. ZZ ) -> ( P || ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) <-> ( P || ( ( C x. B ) + ( A x. D ) ) \/ P || ( ( C x. B ) - ( A x. D ) ) ) ) ) | 
						
							| 103 | 3 100 101 102 | syl3anc |  |-  ( ph -> ( P || ( ( ( C x. B ) + ( A x. D ) ) x. ( ( C x. B ) - ( A x. D ) ) ) <-> ( P || ( ( C x. B ) + ( A x. D ) ) \/ P || ( ( C x. B ) - ( A x. D ) ) ) ) ) | 
						
							| 104 | 99 103 | mpbid |  |-  ( ph -> ( P || ( ( C x. B ) + ( A x. D ) ) \/ P || ( ( C x. B ) - ( A x. D ) ) ) ) | 
						
							| 105 | 19 45 104 | mpjaodan |  |-  ( ph -> N e. S ) |