| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sq.1 |  |-  S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) | 
						
							| 2 |  | 2sqlem5.1 |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | 2sqlem5.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 4 |  | 2sqlem4.3 |  |-  ( ph -> A e. ZZ ) | 
						
							| 5 |  | 2sqlem4.4 |  |-  ( ph -> B e. ZZ ) | 
						
							| 6 |  | 2sqlem4.5 |  |-  ( ph -> C e. ZZ ) | 
						
							| 7 |  | 2sqlem4.6 |  |-  ( ph -> D e. ZZ ) | 
						
							| 8 |  | 2sqlem4.7 |  |-  ( ph -> ( N x. P ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 9 |  | 2sqlem4.8 |  |-  ( ph -> P = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) | 
						
							| 10 |  | 2sqlem4.9 |  |-  ( ph -> P || ( ( C x. B ) + ( A x. D ) ) ) | 
						
							| 11 |  | gzreim |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] ) | 
						
							| 12 | 4 5 11 | syl2anc |  |-  ( ph -> ( A + ( _i x. B ) ) e. Z[i] ) | 
						
							| 13 |  | gzreim |  |-  ( ( C e. ZZ /\ D e. ZZ ) -> ( C + ( _i x. D ) ) e. Z[i] ) | 
						
							| 14 | 6 7 13 | syl2anc |  |-  ( ph -> ( C + ( _i x. D ) ) e. Z[i] ) | 
						
							| 15 |  | gzmulcl |  |-  ( ( ( A + ( _i x. B ) ) e. Z[i] /\ ( C + ( _i x. D ) ) e. Z[i] ) -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] ) | 
						
							| 16 | 12 14 15 | syl2anc |  |-  ( ph -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] ) | 
						
							| 17 |  | gzcn |  |-  ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC ) | 
						
							| 19 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 21 | 20 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 22 | 20 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 23 | 18 21 22 | divcld |  |-  ( ph -> ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. CC ) | 
						
							| 24 | 20 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 25 | 24 18 22 | redivd |  |-  ( ph -> ( Re ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) | 
						
							| 26 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 27 | 3 26 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 28 |  | zsqcl |  |-  ( P e. ZZ -> ( P ^ 2 ) e. ZZ ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> ( P ^ 2 ) e. ZZ ) | 
						
							| 30 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 31 | 30 29 | zmulcld |  |-  ( ph -> ( N x. ( P ^ 2 ) ) e. ZZ ) | 
						
							| 32 |  | dvdsmul2 |  |-  ( ( P e. ZZ /\ P e. ZZ ) -> P || ( P x. P ) ) | 
						
							| 33 | 27 27 32 | syl2anc |  |-  ( ph -> P || ( P x. P ) ) | 
						
							| 34 | 21 | sqvald |  |-  ( ph -> ( P ^ 2 ) = ( P x. P ) ) | 
						
							| 35 | 33 34 | breqtrrd |  |-  ( ph -> P || ( P ^ 2 ) ) | 
						
							| 36 |  | dvdsmul2 |  |-  ( ( N e. ZZ /\ ( P ^ 2 ) e. ZZ ) -> ( P ^ 2 ) || ( N x. ( P ^ 2 ) ) ) | 
						
							| 37 | 30 29 36 | syl2anc |  |-  ( ph -> ( P ^ 2 ) || ( N x. ( P ^ 2 ) ) ) | 
						
							| 38 | 27 29 31 35 37 | dvdstrd |  |-  ( ph -> P || ( N x. ( P ^ 2 ) ) ) | 
						
							| 39 |  | gzcn |  |-  ( ( A + ( _i x. B ) ) e. Z[i] -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 40 | 12 39 | syl |  |-  ( ph -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 41 | 40 | abscld |  |-  ( ph -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ph -> ( abs ` ( A + ( _i x. B ) ) ) e. CC ) | 
						
							| 43 |  | gzcn |  |-  ( ( C + ( _i x. D ) ) e. Z[i] -> ( C + ( _i x. D ) ) e. CC ) | 
						
							| 44 | 14 43 | syl |  |-  ( ph -> ( C + ( _i x. D ) ) e. CC ) | 
						
							| 45 | 44 | abscld |  |-  ( ph -> ( abs ` ( C + ( _i x. D ) ) ) e. RR ) | 
						
							| 46 | 45 | recnd |  |-  ( ph -> ( abs ` ( C + ( _i x. D ) ) ) e. CC ) | 
						
							| 47 | 42 46 | sqmuld |  |-  ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) | 
						
							| 48 | 4 | zred |  |-  ( ph -> A e. RR ) | 
						
							| 49 | 5 | zred |  |-  ( ph -> B e. RR ) | 
						
							| 50 | 48 49 | crred |  |-  ( ph -> ( Re ` ( A + ( _i x. B ) ) ) = A ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 52 | 48 49 | crimd |  |-  ( ph -> ( Im ` ( A + ( _i x. B ) ) ) = B ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( B ^ 2 ) ) | 
						
							| 54 | 51 53 | oveq12d |  |-  ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) | 
						
							| 55 | 40 | absvalsq2d |  |-  ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) ) | 
						
							| 56 | 54 55 8 | 3eqtr4d |  |-  ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( N x. P ) ) | 
						
							| 57 | 6 | zred |  |-  ( ph -> C e. RR ) | 
						
							| 58 | 7 | zred |  |-  ( ph -> D e. RR ) | 
						
							| 59 | 57 58 | crred |  |-  ( ph -> ( Re ` ( C + ( _i x. D ) ) ) = C ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ph -> ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( C ^ 2 ) ) | 
						
							| 61 | 57 58 | crimd |  |-  ( ph -> ( Im ` ( C + ( _i x. D ) ) ) = D ) | 
						
							| 62 | 61 | oveq1d |  |-  ( ph -> ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( D ^ 2 ) ) | 
						
							| 63 | 60 62 | oveq12d |  |-  ( ph -> ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) | 
						
							| 64 | 44 | absvalsq2d |  |-  ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) | 
						
							| 65 | 63 64 9 | 3eqtr4d |  |-  ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = P ) | 
						
							| 66 | 56 65 | oveq12d |  |-  ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) x. ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( N x. P ) x. P ) ) | 
						
							| 67 | 2 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 68 | 67 21 21 | mulassd |  |-  ( ph -> ( ( N x. P ) x. P ) = ( N x. ( P x. P ) ) ) | 
						
							| 69 | 47 66 68 | 3eqtrd |  |-  ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( N x. ( P x. P ) ) ) | 
						
							| 70 | 40 44 | absmuld |  |-  ( ph -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) x. ( abs ` ( C + ( _i x. D ) ) ) ) ^ 2 ) ) | 
						
							| 72 | 34 | oveq2d |  |-  ( ph -> ( N x. ( P ^ 2 ) ) = ( N x. ( P x. P ) ) ) | 
						
							| 73 | 69 71 72 | 3eqtr4d |  |-  ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( N x. ( P ^ 2 ) ) ) | 
						
							| 74 | 38 73 | breqtrrd |  |-  ( ph -> P || ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) | 
						
							| 75 | 18 | absvalsq2d |  |-  ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) | 
						
							| 76 |  | elgz |  |-  ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] <-> ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. CC /\ ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ /\ ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) ) | 
						
							| 77 | 76 | simp2bi |  |-  ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) | 
						
							| 78 | 16 77 | syl |  |-  ( ph -> ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) | 
						
							| 79 |  | zsqcl |  |-  ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) | 
						
							| 80 | 78 79 | syl |  |-  ( ph -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) | 
						
							| 81 | 80 | zcnd |  |-  ( ph -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. CC ) | 
						
							| 82 | 76 | simp3bi |  |-  ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) e. Z[i] -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) | 
						
							| 83 | 16 82 | syl |  |-  ( ph -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) | 
						
							| 84 |  | zsqcl |  |-  ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) | 
						
							| 85 | 83 84 | syl |  |-  ( ph -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ ) | 
						
							| 86 | 85 | zcnd |  |-  ( ph -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. CC ) | 
						
							| 87 | 81 86 | addcomd |  |-  ( ph -> ( ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) = ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) | 
						
							| 88 | 75 87 | eqtrd |  |-  ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) = ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) | 
						
							| 89 | 74 88 | breqtrd |  |-  ( ph -> P || ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) | 
						
							| 90 | 6 | zcnd |  |-  ( ph -> C e. CC ) | 
						
							| 91 | 5 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 92 | 90 91 | mulcld |  |-  ( ph -> ( C x. B ) e. CC ) | 
						
							| 93 | 4 | zcnd |  |-  ( ph -> A e. CC ) | 
						
							| 94 | 7 | zcnd |  |-  ( ph -> D e. CC ) | 
						
							| 95 | 93 94 | mulcld |  |-  ( ph -> ( A x. D ) e. CC ) | 
						
							| 96 | 92 95 | addcomd |  |-  ( ph -> ( ( C x. B ) + ( A x. D ) ) = ( ( A x. D ) + ( C x. B ) ) ) | 
						
							| 97 | 90 91 | mulcomd |  |-  ( ph -> ( C x. B ) = ( B x. C ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ph -> ( ( A x. D ) + ( C x. B ) ) = ( ( A x. D ) + ( B x. C ) ) ) | 
						
							| 99 | 96 98 | eqtrd |  |-  ( ph -> ( ( C x. B ) + ( A x. D ) ) = ( ( A x. D ) + ( B x. C ) ) ) | 
						
							| 100 | 10 99 | breqtrd |  |-  ( ph -> P || ( ( A x. D ) + ( B x. C ) ) ) | 
						
							| 101 | 40 44 | immuld |  |-  ( ph -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) ) | 
						
							| 102 | 50 61 | oveq12d |  |-  ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) = ( A x. D ) ) | 
						
							| 103 | 52 59 | oveq12d |  |-  ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) = ( B x. C ) ) | 
						
							| 104 | 102 103 | oveq12d |  |-  ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) x. ( Im ` ( C + ( _i x. D ) ) ) ) + ( ( Im ` ( A + ( _i x. B ) ) ) x. ( Re ` ( C + ( _i x. D ) ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) | 
						
							| 105 | 101 104 | eqtrd |  |-  ( ph -> ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) = ( ( A x. D ) + ( B x. C ) ) ) | 
						
							| 106 | 100 105 | breqtrrd |  |-  ( ph -> P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) | 
						
							| 107 |  | 2nn |  |-  2 e. NN | 
						
							| 108 | 107 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 109 |  | prmdvdsexp |  |-  ( ( P e. Prime /\ ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ /\ 2 e. NN ) -> ( P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) | 
						
							| 110 | 3 83 108 109 | syl3anc |  |-  ( ph -> ( P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) | 
						
							| 111 | 106 110 | mpbird |  |-  ( ph -> P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) | 
						
							| 112 |  | dvdsadd2b |  |-  ( ( P e. ZZ /\ ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ /\ ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) e. ZZ /\ P || ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 113 | 27 80 85 111 112 | syl112anc |  |-  ( ph -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) + ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 114 | 89 113 | mpbird |  |-  ( ph -> P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) ) | 
						
							| 115 |  | prmdvdsexp |  |-  ( ( P e. Prime /\ ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ /\ 2 e. NN ) -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) | 
						
							| 116 | 3 78 108 115 | syl3anc |  |-  ( ph -> ( P || ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) <-> P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) ) | 
						
							| 117 | 114 116 | mpbid |  |-  ( ph -> P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ) | 
						
							| 118 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) -> ( P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) | 
						
							| 119 | 27 22 78 118 | syl3anc |  |-  ( ph -> ( P || ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) | 
						
							| 120 | 117 119 | mpbid |  |-  ( ph -> ( ( Re ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) | 
						
							| 121 | 25 120 | eqeltrd |  |-  ( ph -> ( Re ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ ) | 
						
							| 122 | 24 18 22 | imdivd |  |-  ( ph -> ( Im ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) | 
						
							| 123 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. ZZ ) -> ( P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) | 
						
							| 124 | 27 22 83 123 | syl3anc |  |-  ( ph -> ( P || ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) <-> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) ) | 
						
							| 125 | 106 124 | mpbid |  |-  ( ph -> ( ( Im ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) e. ZZ ) | 
						
							| 126 | 122 125 | eqeltrd |  |-  ( ph -> ( Im ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ ) | 
						
							| 127 |  | elgz |  |-  ( ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. Z[i] <-> ( ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. CC /\ ( Re ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ /\ ( Im ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) e. ZZ ) ) | 
						
							| 128 | 23 121 126 127 | syl3anbrc |  |-  ( ph -> ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. Z[i] ) | 
						
							| 129 | 18 21 22 | absdivd |  |-  ( ph -> ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / ( abs ` P ) ) ) | 
						
							| 130 | 20 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 131 | 130 | nn0ge0d |  |-  ( ph -> 0 <_ P ) | 
						
							| 132 | 24 131 | absidd |  |-  ( ph -> ( abs ` P ) = P ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ph -> ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / ( abs ` P ) ) = ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) | 
						
							| 134 | 129 133 | eqtrd |  |-  ( ph -> ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) = ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ) | 
						
							| 135 | 134 | oveq1d |  |-  ( ph -> ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) = ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ^ 2 ) ) | 
						
							| 136 | 18 | abscld |  |-  ( ph -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. RR ) | 
						
							| 137 | 136 | recnd |  |-  ( ph -> ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) e. CC ) | 
						
							| 138 | 137 21 22 | sqdivd |  |-  ( ph -> ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) / P ) ^ 2 ) = ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) / ( P ^ 2 ) ) ) | 
						
							| 139 | 73 | oveq1d |  |-  ( ph -> ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) / ( P ^ 2 ) ) = ( ( N x. ( P ^ 2 ) ) / ( P ^ 2 ) ) ) | 
						
							| 140 | 20 | nnsqcld |  |-  ( ph -> ( P ^ 2 ) e. NN ) | 
						
							| 141 | 140 | nncnd |  |-  ( ph -> ( P ^ 2 ) e. CC ) | 
						
							| 142 | 140 | nnne0d |  |-  ( ph -> ( P ^ 2 ) =/= 0 ) | 
						
							| 143 | 67 141 142 | divcan4d |  |-  ( ph -> ( ( N x. ( P ^ 2 ) ) / ( P ^ 2 ) ) = N ) | 
						
							| 144 | 139 143 | eqtrd |  |-  ( ph -> ( ( ( abs ` ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) ) ^ 2 ) / ( P ^ 2 ) ) = N ) | 
						
							| 145 | 135 138 144 | 3eqtrrd |  |-  ( ph -> N = ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) ) | 
						
							| 146 |  | fveq2 |  |-  ( x = ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) -> ( abs ` x ) = ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ) | 
						
							| 147 | 146 | oveq1d |  |-  ( x = ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) -> ( ( abs ` x ) ^ 2 ) = ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) ) | 
						
							| 148 | 147 | rspceeqv |  |-  ( ( ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) e. Z[i] /\ N = ( ( abs ` ( ( ( A + ( _i x. B ) ) x. ( C + ( _i x. D ) ) ) / P ) ) ^ 2 ) ) -> E. x e. Z[i] N = ( ( abs ` x ) ^ 2 ) ) | 
						
							| 149 | 128 145 148 | syl2anc |  |-  ( ph -> E. x e. Z[i] N = ( ( abs ` x ) ^ 2 ) ) | 
						
							| 150 | 1 | 2sqlem1 |  |-  ( N e. S <-> E. x e. Z[i] N = ( ( abs ` x ) ^ 2 ) ) | 
						
							| 151 | 149 150 | sylibr |  |-  ( ph -> N e. S ) |