| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abfmpeld.1 |
|- F = ( x e. V |-> { y | ps } ) |
| 2 |
|
abfmpeld.2 |
|- ( ph -> { y | ps } e. _V ) |
| 3 |
|
abfmpeld.3 |
|- ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
| 4 |
2
|
alrimiv |
|- ( ph -> A. x { y | ps } e. _V ) |
| 5 |
|
csbexg |
|- ( A. x { y | ps } e. _V -> [_ A / x ]_ { y | ps } e. _V ) |
| 6 |
4 5
|
syl |
|- ( ph -> [_ A / x ]_ { y | ps } e. _V ) |
| 7 |
1
|
fvmpts |
|- ( ( A e. V /\ [_ A / x ]_ { y | ps } e. _V ) -> ( F ` A ) = [_ A / x ]_ { y | ps } ) |
| 8 |
6 7
|
sylan2 |
|- ( ( A e. V /\ ph ) -> ( F ` A ) = [_ A / x ]_ { y | ps } ) |
| 9 |
|
csbab |
|- [_ A / x ]_ { y | ps } = { y | [. A / x ]. ps } |
| 10 |
8 9
|
eqtrdi |
|- ( ( A e. V /\ ph ) -> ( F ` A ) = { y | [. A / x ]. ps } ) |
| 11 |
10
|
eleq2d |
|- ( ( A e. V /\ ph ) -> ( B e. ( F ` A ) <-> B e. { y | [. A / x ]. ps } ) ) |
| 12 |
11
|
adantl |
|- ( ( B e. W /\ ( A e. V /\ ph ) ) -> ( B e. ( F ` A ) <-> B e. { y | [. A / x ]. ps } ) ) |
| 13 |
|
simpll |
|- ( ( ( A e. V /\ ph ) /\ y = B ) -> A e. V ) |
| 14 |
3
|
ancomsd |
|- ( ph -> ( ( y = B /\ x = A ) -> ( ps <-> ch ) ) ) |
| 15 |
14
|
adantl |
|- ( ( A e. V /\ ph ) -> ( ( y = B /\ x = A ) -> ( ps <-> ch ) ) ) |
| 16 |
15
|
impl |
|- ( ( ( ( A e. V /\ ph ) /\ y = B ) /\ x = A ) -> ( ps <-> ch ) ) |
| 17 |
13 16
|
sbcied |
|- ( ( ( A e. V /\ ph ) /\ y = B ) -> ( [. A / x ]. ps <-> ch ) ) |
| 18 |
17
|
ex |
|- ( ( A e. V /\ ph ) -> ( y = B -> ( [. A / x ]. ps <-> ch ) ) ) |
| 19 |
18
|
alrimiv |
|- ( ( A e. V /\ ph ) -> A. y ( y = B -> ( [. A / x ]. ps <-> ch ) ) ) |
| 20 |
|
elabgt |
|- ( ( B e. W /\ A. y ( y = B -> ( [. A / x ]. ps <-> ch ) ) ) -> ( B e. { y | [. A / x ]. ps } <-> ch ) ) |
| 21 |
19 20
|
sylan2 |
|- ( ( B e. W /\ ( A e. V /\ ph ) ) -> ( B e. { y | [. A / x ]. ps } <-> ch ) ) |
| 22 |
12 21
|
bitrd |
|- ( ( B e. W /\ ( A e. V /\ ph ) ) -> ( B e. ( F ` A ) <-> ch ) ) |
| 23 |
22
|
an13s |
|- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( B e. ( F ` A ) <-> ch ) ) |
| 24 |
23
|
ex |
|- ( ph -> ( ( A e. V /\ B e. W ) -> ( B e. ( F ` A ) <-> ch ) ) ) |