| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1.2 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 3 |
|
oveq2 |
|- ( b = a -> ( N ^ b ) = ( N ^ a ) ) |
| 4 |
3
|
oveq1d |
|- ( b = a -> ( ( N ^ b ) - 1 ) = ( ( N ^ a ) - 1 ) ) |
| 5 |
4
|
cbvprodv |
|- prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) = prod_ a e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ a ) - 1 ) |
| 6 |
5
|
oveq2i |
|- ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ a e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ a ) - 1 ) ) |
| 7 |
|
id |
|- ( h = k -> h = k ) |
| 8 |
|
oveq2 |
|- ( c = b -> ( N ^ c ) = ( N ^ b ) ) |
| 9 |
8
|
oveq1d |
|- ( c = b -> ( ( N ^ c ) - 1 ) = ( ( N ^ b ) - 1 ) ) |
| 10 |
9
|
cbvprodv |
|- prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) = prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) |
| 11 |
10
|
oveq2i |
|- ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) |
| 12 |
11
|
a1i |
|- ( h = k -> ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) ) |
| 13 |
7 12
|
breq12d |
|- ( h = k -> ( h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) <-> k || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) ) ) |
| 14 |
13
|
notbid |
|- ( h = k -> ( -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) <-> -. k || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) ) ) |
| 15 |
14
|
cbvrabv |
|- { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } = { k e. ( 1 ... B ) | -. k || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) } |
| 16 |
15
|
infeq1i |
|- inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) = inf ( { k e. ( 1 ... B ) | -. k || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) } , RR , < ) |
| 17 |
1 6 2 16
|
aks4d1p4 |
|- ( ph -> ( inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) e. ( 1 ... B ) /\ -. inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ b e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ b ) - 1 ) ) ) ) |
| 18 |
17
|
simpld |
|- ( ph -> inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) e. ( 1 ... B ) ) |
| 19 |
|
oveq2 |
|- ( r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) -> ( N gcd r ) = ( N gcd inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) -> ( N gcd r ) = ( N gcd inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( ph /\ r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) -> ( ( N gcd r ) = 1 <-> ( N gcd inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) = 1 ) ) |
| 22 |
|
fveq2 |
|- ( r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) -> ( odZ ` r ) = ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) -> ( odZ ` r ) = ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ) |
| 24 |
23
|
fveq1d |
|- ( ( ph /\ r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) -> ( ( odZ ` r ) ` N ) = ( ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ` N ) ) |
| 25 |
24
|
breq2d |
|- ( ( ph /\ r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) -> ( ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` r ) ` N ) <-> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ` N ) ) ) |
| 26 |
21 25
|
anbi12d |
|- ( ( ph /\ r = inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) -> ( ( ( N gcd r ) = 1 /\ ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` r ) ` N ) ) <-> ( ( N gcd inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) = 1 /\ ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ` N ) ) ) ) |
| 27 |
1 6 2 16
|
aks4d1p8 |
|- ( ph -> ( N gcd inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) = 1 ) |
| 28 |
1 6 2 16
|
aks4d1p9 |
|- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ` N ) ) |
| 29 |
27 28
|
jca |
|- ( ph -> ( ( N gcd inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) = 1 /\ ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` inf ( { h e. ( 1 ... B ) | -. h || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ c e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ c ) - 1 ) ) } , RR , < ) ) ` N ) ) ) |
| 30 |
18 26 29
|
rspcedvd |
|- ( ph -> E. r e. ( 1 ... B ) ( ( N gcd r ) = 1 /\ ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` r ) ` N ) ) ) |