Metamath Proof Explorer


Theorem aks4d1

Description: Lemma 4.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf , existence of a polynomially bounded number by the digit size of N that asserts the polynomial subspace that we need to search to guarantee that N is prime. Eventually we want to show that the polynomial searching space is bounded by degree B . (Contributed by metakunt, 14-Nov-2024)

Ref Expression
Hypotheses aks4d1.1 φN3
aks4d1.2 B=log2N5
Assertion aks4d1 φr1BNgcdr=1log2N2<odrN

Proof

Step Hyp Ref Expression
1 aks4d1.1 φN3
2 aks4d1.2 B=log2N5
3 oveq2 b=aNb=Na
4 3 oveq1d b=aNb1=Na1
5 4 cbvprodv b=1log2N2Nb1=a=1log2N2Na1
6 5 oveq2i Nlog2Bb=1log2N2Nb1=Nlog2Ba=1log2N2Na1
7 id h=kh=k
8 oveq2 c=bNc=Nb
9 8 oveq1d c=bNc1=Nb1
10 9 cbvprodv c=1log2N2Nc1=b=1log2N2Nb1
11 10 oveq2i Nlog2Bc=1log2N2Nc1=Nlog2Bb=1log2N2Nb1
12 11 a1i h=kNlog2Bc=1log2N2Nc1=Nlog2Bb=1log2N2Nb1
13 7 12 breq12d h=khNlog2Bc=1log2N2Nc1kNlog2Bb=1log2N2Nb1
14 13 notbid h=k¬hNlog2Bc=1log2N2Nc1¬kNlog2Bb=1log2N2Nb1
15 14 cbvrabv h1B|¬hNlog2Bc=1log2N2Nc1=k1B|¬kNlog2Bb=1log2N2Nb1
16 15 infeq1i suph1B|¬hNlog2Bc=1log2N2Nc1<=supk1B|¬kNlog2Bb=1log2N2Nb1<
17 1 6 2 16 aks4d1p4 φsuph1B|¬hNlog2Bc=1log2N2Nc1<1B¬suph1B|¬hNlog2Bc=1log2N2Nc1<Nlog2Bb=1log2N2Nb1
18 17 simpld φsuph1B|¬hNlog2Bc=1log2N2Nc1<1B
19 oveq2 r=suph1B|¬hNlog2Bc=1log2N2Nc1<Ngcdr=Ngcdsuph1B|¬hNlog2Bc=1log2N2Nc1<
20 19 adantl φr=suph1B|¬hNlog2Bc=1log2N2Nc1<Ngcdr=Ngcdsuph1B|¬hNlog2Bc=1log2N2Nc1<
21 20 eqeq1d φr=suph1B|¬hNlog2Bc=1log2N2Nc1<Ngcdr=1Ngcdsuph1B|¬hNlog2Bc=1log2N2Nc1<=1
22 fveq2 r=suph1B|¬hNlog2Bc=1log2N2Nc1<odr=odsuph1B|¬hNlog2Bc=1log2N2Nc1<
23 22 adantl φr=suph1B|¬hNlog2Bc=1log2N2Nc1<odr=odsuph1B|¬hNlog2Bc=1log2N2Nc1<
24 23 fveq1d φr=suph1B|¬hNlog2Bc=1log2N2Nc1<odrN=odsuph1B|¬hNlog2Bc=1log2N2Nc1<N
25 24 breq2d φr=suph1B|¬hNlog2Bc=1log2N2Nc1<log2N2<odrNlog2N2<odsuph1B|¬hNlog2Bc=1log2N2Nc1<N
26 21 25 anbi12d φr=suph1B|¬hNlog2Bc=1log2N2Nc1<Ngcdr=1log2N2<odrNNgcdsuph1B|¬hNlog2Bc=1log2N2Nc1<=1log2N2<odsuph1B|¬hNlog2Bc=1log2N2Nc1<N
27 1 6 2 16 aks4d1p8 φNgcdsuph1B|¬hNlog2Bc=1log2N2Nc1<=1
28 1 6 2 16 aks4d1p9 φlog2N2<odsuph1B|¬hNlog2Bc=1log2N2Nc1<N
29 27 28 jca φNgcdsuph1B|¬hNlog2Bc=1log2N2Nc1<=1log2N2<odsuph1B|¬hNlog2Bc=1log2N2Nc1<N
30 18 26 29 rspcedvd φr1BNgcdr=1log2N2<odrN