Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p9.1 |
|
2 |
|
aks4d1p9.2 |
|
3 |
|
aks4d1p9.3 |
|
4 |
|
aks4d1p9.4 |
|
5 |
|
2re |
|
6 |
5
|
a1i |
|
7 |
|
2pos |
|
8 |
7
|
a1i |
|
9 |
|
eluzelz |
|
10 |
1 9
|
syl |
|
11 |
10
|
zred |
|
12 |
|
0red |
|
13 |
|
3re |
|
14 |
13
|
a1i |
|
15 |
|
3pos |
|
16 |
15
|
a1i |
|
17 |
|
eluzle |
|
18 |
1 17
|
syl |
|
19 |
12 14 11 16 18
|
ltletrd |
|
20 |
|
1red |
|
21 |
|
1lt2 |
|
22 |
21
|
a1i |
|
23 |
20 22
|
ltned |
|
24 |
23
|
necomd |
|
25 |
6 8 11 19 24
|
relogbcld |
|
26 |
25
|
resqcld |
|
27 |
1 2 3 4
|
aks4d1p4 |
|
28 |
27
|
simpld |
|
29 |
|
elfznn |
|
30 |
28 29
|
syl |
|
31 |
1 2 3 4
|
aks4d1p8 |
|
32 |
30 10 31
|
3jca |
|
33 |
|
odzcl |
|
34 |
32 33
|
syl |
|
35 |
34
|
nnzd |
|
36 |
|
flge |
|
37 |
26 35 36
|
syl2anc |
|
38 |
37
|
biimpd |
|
39 |
38
|
imp |
|
40 |
30
|
nnzd |
|
41 |
40
|
adantr |
|
42 |
10
|
adantr |
|
43 |
34
|
nnnn0d |
|
44 |
43
|
adantr |
|
45 |
42 44
|
zexpcld |
|
46 |
|
1zzd |
|
47 |
45 46
|
zsubcld |
|
48 |
1 3
|
aks4d1lem1 |
|
49 |
48
|
simpld |
|
50 |
49
|
nnred |
|
51 |
49
|
nngt0d |
|
52 |
6 8 50 51 24
|
relogbcld |
|
53 |
52
|
flcld |
|
54 |
|
2cnd |
|
55 |
12 8
|
gtned |
|
56 |
54 55 24
|
3jca |
|
57 |
|
logb1 |
|
58 |
56 57
|
syl |
|
59 |
|
2z |
|
60 |
59
|
a1i |
|
61 |
6
|
leidd |
|
62 |
|
0lt1 |
|
63 |
62
|
a1i |
|
64 |
49
|
nnge1d |
|
65 |
60 61 20 63 50 51 64
|
logblebd |
|
66 |
58 65
|
eqbrtrrd |
|
67 |
|
0zd |
|
68 |
|
flge |
|
69 |
52 67 68
|
syl2anc |
|
70 |
66 69
|
mpbid |
|
71 |
53 70
|
jca |
|
72 |
|
elnn0z |
|
73 |
71 72
|
sylibr |
|
74 |
10 73
|
zexpcld |
|
75 |
|
fzfid |
|
76 |
10
|
adantr |
|
77 |
|
elfznn |
|
78 |
77
|
nnnn0d |
|
79 |
78
|
adantl |
|
80 |
76 79
|
zexpcld |
|
81 |
|
1zzd |
|
82 |
80 81
|
zsubcld |
|
83 |
75 82
|
fprodzcl |
|
84 |
74 83
|
zmulcld |
|
85 |
2
|
a1i |
|
86 |
85
|
eleq1d |
|
87 |
84 86
|
mpbird |
|
88 |
87
|
adantr |
|
89 |
|
iddvds |
|
90 |
35 89
|
syl |
|
91 |
|
odzdvds |
|
92 |
32 43 91
|
syl2anc |
|
93 |
90 92
|
mpbird |
|
94 |
93
|
adantr |
|
95 |
73
|
adantr |
|
96 |
42 95
|
zexpcld |
|
97 |
|
fzfid |
|
98 |
42
|
adantr |
|
99 |
77
|
adantl |
|
100 |
99
|
nnnn0d |
|
101 |
98 100
|
zexpcld |
|
102 |
|
1zzd |
|
103 |
101 102
|
zsubcld |
|
104 |
97 103
|
fprodzcl |
|
105 |
|
fveq2 |
|
106 |
105
|
breq1d |
|
107 |
|
ssidd |
|
108 |
10
|
adantr |
|
109 |
|
elfznn |
|
110 |
109
|
adantl |
|
111 |
110
|
nnnn0d |
|
112 |
108 111
|
zexpcld |
|
113 |
|
1zzd |
|
114 |
112 113
|
zsubcld |
|
115 |
114
|
fmpttd |
|
116 |
75 107 115
|
fprodfvdvdsd |
|
117 |
116
|
adantr |
|
118 |
25
|
adantr |
|
119 |
118
|
resqcld |
|
120 |
119
|
flcld |
|
121 |
35
|
adantr |
|
122 |
34
|
nnge1d |
|
123 |
122
|
adantr |
|
124 |
|
simpr |
|
125 |
46 120 121 123 124
|
elfzd |
|
126 |
106 117 125
|
rspcdva |
|
127 |
|
eqidd |
|
128 |
|
simpr |
|
129 |
128
|
oveq2d |
|
130 |
129
|
oveq1d |
|
131 |
127 130 125 47
|
fvmptd |
|
132 |
|
eqidd |
|
133 |
|
simpr |
|
134 |
133
|
oveq2d |
|
135 |
134
|
oveq1d |
|
136 |
|
simpr |
|
137 |
132 135 136 103
|
fvmptd |
|
138 |
137
|
prodeq2dv |
|
139 |
131 138
|
breq12d |
|
140 |
126 139
|
mpbid |
|
141 |
47 96 104 140
|
dvdsmultr2d |
|
142 |
2
|
a1i |
|
143 |
141 142
|
breqtrrd |
|
144 |
41 47 88 94 143
|
dvdstrd |
|
145 |
144
|
ex |
|
146 |
145
|
adantr |
|
147 |
146
|
imp |
|
148 |
39 147
|
mpdan |
|
149 |
27
|
simprd |
|
150 |
149
|
adantr |
|
151 |
148 150
|
pm2.65da |
|
152 |
34
|
nnred |
|
153 |
26 152
|
ltnled |
|
154 |
151 153
|
mpbird |
|