| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p9.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p9.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p9.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
|
aks4d1p9.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
| 5 |
|
2re |
⊢ 2 ∈ ℝ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 7 |
|
2pos |
⊢ 0 < 2 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 9 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 11 |
10
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 12 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 13 |
|
3re |
⊢ 3 ∈ ℝ |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 15 |
|
3pos |
⊢ 0 < 3 |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 17 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 18 |
1 17
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 19 |
12 14 11 16 18
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 20 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 21 |
|
1lt2 |
⊢ 1 < 2 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 23 |
20 22
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 24 |
23
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 25 |
6 8 11 19 24
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 26 |
25
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) ∈ ℝ ) |
| 27 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 28 |
27
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
| 29 |
|
elfznn |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ∈ ℕ ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 31 |
1 2 3 4
|
aks4d1p8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 32 |
30 10 31
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 gcd 𝑅 ) = 1 ) ) |
| 33 |
|
odzcl |
⊢ ( ( 𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 gcd 𝑅 ) = 1 ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ ) |
| 35 |
34
|
nnzd |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℤ ) |
| 36 |
|
flge |
⊢ ( ( ( ( 2 logb 𝑁 ) ↑ 2 ) ∈ ℝ ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℤ ) → ( ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ↔ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
| 37 |
26 35 36
|
syl2anc |
⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ↔ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
| 38 |
37
|
biimpd |
⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
| 39 |
38
|
imp |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) |
| 40 |
30
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑅 ∈ ℤ ) |
| 42 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑁 ∈ ℤ ) |
| 43 |
34
|
nnnn0d |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ0 ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ0 ) |
| 45 |
42 44
|
zexpcld |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ∈ ℤ ) |
| 46 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 1 ∈ ℤ ) |
| 47 |
45 46
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) |
| 48 |
1 3
|
aks4d1lem1 |
⊢ ( 𝜑 → ( 𝐵 ∈ ℕ ∧ 9 < 𝐵 ) ) |
| 49 |
48
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 50 |
49
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 51 |
49
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 52 |
6 8 50 51 24
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
| 53 |
52
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
| 54 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 55 |
12 8
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 56 |
54 55 24
|
3jca |
⊢ ( 𝜑 → ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) ) |
| 57 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → ( 2 logb 1 ) = 0 ) |
| 59 |
|
2z |
⊢ 2 ∈ ℤ |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 61 |
6
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 62 |
|
0lt1 |
⊢ 0 < 1 |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 64 |
49
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐵 ) |
| 65 |
60 61 20 63 50 51 64
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 1 ) ≤ ( 2 logb 𝐵 ) ) |
| 66 |
58 65
|
eqbrtrrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝐵 ) ) |
| 67 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 68 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 69 |
52 67 68
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 70 |
66 69
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 71 |
53 70
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 72 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 73 |
71 72
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 74 |
10 73
|
zexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) |
| 75 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∈ Fin ) |
| 76 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 77 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ℕ ) |
| 78 |
77
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 80 |
76 79
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
| 81 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
| 82 |
80 81
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 83 |
75 82
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 84 |
74 83
|
zmulcld |
⊢ ( 𝜑 → ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ∈ ℤ ) |
| 85 |
2
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 86 |
85
|
eleq1d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℤ ↔ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ∈ ℤ ) ) |
| 87 |
84 86
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝐴 ∈ ℤ ) |
| 89 |
|
iddvds |
⊢ ( ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℤ → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∥ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 90 |
35 89
|
syl |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∥ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 91 |
|
odzdvds |
⊢ ( ( ( 𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 gcd 𝑅 ) = 1 ) ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℕ0 ) → ( 𝑅 ∥ ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∥ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ) |
| 92 |
32 43 91
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∥ ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∥ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ) |
| 93 |
90 92
|
mpbird |
⊢ ( 𝜑 → 𝑅 ∥ ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ) |
| 95 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 96 |
42 95
|
zexpcld |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) |
| 97 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∈ Fin ) |
| 98 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 99 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 100 |
99
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 101 |
98 100
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
| 102 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
| 103 |
101 102
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 104 |
97 103
|
fprodzcl |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 105 |
|
fveq2 |
⊢ ( 𝑧 = ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) → ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑧 ) = ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ) |
| 106 |
105
|
breq1d |
⊢ ( 𝑧 = ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) → ( ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑧 ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 107 |
|
ssidd |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
| 108 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 109 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑥 ∈ ℕ ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑥 ∈ ℕ ) |
| 111 |
110
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑥 ∈ ℕ0 ) |
| 112 |
108 111
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑥 ) ∈ ℤ ) |
| 113 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
| 114 |
112 113
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑥 ) − 1 ) ∈ ℤ ) |
| 115 |
114
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) : ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ⟶ ℤ ) |
| 116 |
75 107 115
|
fprodfvdvdsd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑧 ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ∀ 𝑧 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑧 ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) ) |
| 118 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 119 |
118
|
resqcld |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 2 logb 𝑁 ) ↑ 2 ) ∈ ℝ ) |
| 120 |
119
|
flcld |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ∈ ℤ ) |
| 121 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℤ ) |
| 122 |
34
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 1 ≤ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 124 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) |
| 125 |
46 120 121 123 124
|
elfzd |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
| 126 |
106 117 125
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) ) |
| 127 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) = ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ) |
| 128 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑥 = ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) → 𝑥 = ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 129 |
128
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑥 = ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) → ( 𝑁 ↑ 𝑥 ) = ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ) |
| 130 |
129
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑥 = ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) → ( ( 𝑁 ↑ 𝑥 ) − 1 ) = ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ) |
| 131 |
127 130 125 47
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) = ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ) |
| 132 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) = ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ) |
| 133 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) ∧ 𝑥 = 𝑘 ) → 𝑥 = 𝑘 ) |
| 134 |
133
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) ∧ 𝑥 = 𝑘 ) → ( 𝑁 ↑ 𝑥 ) = ( 𝑁 ↑ 𝑘 ) ) |
| 135 |
134
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) ∧ 𝑥 = 𝑘 ) → ( ( 𝑁 ↑ 𝑥 ) − 1 ) = ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 136 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
| 137 |
132 135 136 103
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) = ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 138 |
137
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 139 |
131 138
|
breq12d |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ↦ ( ( 𝑁 ↑ 𝑥 ) − 1 ) ) ‘ 𝑘 ) ↔ ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 140 |
126 139
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ∥ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 141 |
47 96 104 140
|
dvdsmultr2d |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 142 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 143 |
141 142
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → ( ( 𝑁 ↑ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) − 1 ) ∥ 𝐴 ) |
| 144 |
41 47 88 94 143
|
dvdstrd |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑅 ∥ 𝐴 ) |
| 145 |
144
|
ex |
⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) → 𝑅 ∥ 𝐴 ) ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) → ( ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) → 𝑅 ∥ 𝐴 ) ) |
| 147 |
146
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑅 ∥ 𝐴 ) |
| 148 |
39 147
|
mpdan |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) → 𝑅 ∥ 𝐴 ) |
| 149 |
27
|
simprd |
⊢ ( 𝜑 → ¬ 𝑅 ∥ 𝐴 ) |
| 150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) → ¬ 𝑅 ∥ 𝐴 ) |
| 151 |
148 150
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) |
| 152 |
34
|
nnred |
⊢ ( 𝜑 → ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ∈ ℝ ) |
| 153 |
26 152
|
ltnled |
⊢ ( 𝜑 → ( ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ↔ ¬ ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) |
| 154 |
151 153
|
mpbird |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |