Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1lem1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
2 |
|
aks4d1lem1.2 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
5 |
|
2pos |
⊢ 0 < 2 |
6 |
5
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
7 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
9 |
8
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
10 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
11 |
|
3re |
⊢ 3 ∈ ℝ |
12 |
11
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
13 |
|
3pos |
⊢ 0 < 3 |
14 |
13
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
15 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
17 |
10 12 9 14 16
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
18 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
19 |
|
1lt2 |
⊢ 1 < 2 |
20 |
19
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
21 |
18 20
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
22 |
21
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
23 |
4 6 9 17 22
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
24 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
25 |
24
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
26 |
23 25
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
27 |
26
|
ceilcld |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
28 |
|
9re |
⊢ 9 ∈ ℝ |
29 |
28
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
30 |
27
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
31 |
|
9pos |
⊢ 0 < 9 |
32 |
31
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
33 |
9 16
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
34 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
35 |
26 34
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
36 |
29 26 30 33 35
|
ltletrd |
⊢ ( 𝜑 → 9 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
37 |
10 29 30 32 36
|
lttrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
38 |
27 37
|
jca |
⊢ ( 𝜑 → ( ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ∧ 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) ) |
39 |
|
elnnz |
⊢ ( ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℕ ↔ ( ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ∧ 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) ) |
40 |
38 39
|
sylibr |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℕ ) |
41 |
2
|
eleq1i |
⊢ ( 𝐵 ∈ ℕ ↔ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℕ ) |
42 |
40 41
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
43 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
44 |
36 43
|
breqtrrd |
⊢ ( 𝜑 → 9 < 𝐵 ) |
45 |
42 44
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℕ ∧ 9 < 𝐵 ) ) |