| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1lem1.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1lem1.2 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
3
|
a1i |
|- ( ph -> 2 e. RR ) |
| 5 |
|
2pos |
|- 0 < 2 |
| 6 |
5
|
a1i |
|- ( ph -> 0 < 2 ) |
| 7 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 8 |
1 7
|
syl |
|- ( ph -> N e. ZZ ) |
| 9 |
8
|
zred |
|- ( ph -> N e. RR ) |
| 10 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 11 |
|
3re |
|- 3 e. RR |
| 12 |
11
|
a1i |
|- ( ph -> 3 e. RR ) |
| 13 |
|
3pos |
|- 0 < 3 |
| 14 |
13
|
a1i |
|- ( ph -> 0 < 3 ) |
| 15 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 16 |
1 15
|
syl |
|- ( ph -> 3 <_ N ) |
| 17 |
10 12 9 14 16
|
ltletrd |
|- ( ph -> 0 < N ) |
| 18 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 19 |
|
1lt2 |
|- 1 < 2 |
| 20 |
19
|
a1i |
|- ( ph -> 1 < 2 ) |
| 21 |
18 20
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 22 |
21
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 23 |
4 6 9 17 22
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 24 |
|
5nn0 |
|- 5 e. NN0 |
| 25 |
24
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 26 |
23 25
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
| 27 |
26
|
ceilcld |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 28 |
|
9re |
|- 9 e. RR |
| 29 |
28
|
a1i |
|- ( ph -> 9 e. RR ) |
| 30 |
27
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
| 31 |
|
9pos |
|- 0 < 9 |
| 32 |
31
|
a1i |
|- ( ph -> 0 < 9 ) |
| 33 |
9 16
|
3lexlogpow5ineq4 |
|- ( ph -> 9 < ( ( 2 logb N ) ^ 5 ) ) |
| 34 |
|
ceilge |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 35 |
26 34
|
syl |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 36 |
29 26 30 33 35
|
ltletrd |
|- ( ph -> 9 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 37 |
10 29 30 32 36
|
lttrd |
|- ( ph -> 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 38 |
27 37
|
jca |
|- ( ph -> ( ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ /\ 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) ) |
| 39 |
|
elnnz |
|- ( ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. NN <-> ( ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ /\ 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) ) |
| 40 |
38 39
|
sylibr |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. NN ) |
| 41 |
2
|
eleq1i |
|- ( B e. NN <-> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. NN ) |
| 42 |
40 41
|
sylibr |
|- ( ph -> B e. NN ) |
| 43 |
2
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 44 |
36 43
|
breqtrrd |
|- ( ph -> 9 < B ) |
| 45 |
42 44
|
jca |
|- ( ph -> ( B e. NN /\ 9 < B ) ) |