Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p1p1.1 |
|- ( ph -> A e. RR+ ) |
2 |
|
aks4d1p1p1.2 |
|- ( ph -> N e. NN ) |
3 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
4 |
3
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> A e. CC ) |
5 |
1
|
rpne0d |
|- ( ph -> A =/= 0 ) |
6 |
5
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> A =/= 0 ) |
7 |
|
elfzelz |
|- ( k e. ( 1 ... N ) -> k e. ZZ ) |
8 |
7
|
zcnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
9 |
8
|
adantl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. CC ) |
10 |
4 6 9
|
3jca |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( A e. CC /\ A =/= 0 /\ k e. CC ) ) |
11 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ k e. CC ) -> ( A ^c k ) = ( exp ` ( k x. ( log ` A ) ) ) ) |
12 |
10 11
|
syl |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( A ^c k ) = ( exp ` ( k x. ( log ` A ) ) ) ) |
13 |
12
|
prodeq2dv |
|- ( ph -> prod_ k e. ( 1 ... N ) ( A ^c k ) = prod_ k e. ( 1 ... N ) ( exp ` ( k x. ( log ` A ) ) ) ) |
14 |
|
eqid |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` 1 ) |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
2 15
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
17 |
|
eluzelcn |
|- ( k e. ( ZZ>= ` 1 ) -> k e. CC ) |
18 |
17
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. CC ) |
19 |
3
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> A e. CC ) |
20 |
5
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> A =/= 0 ) |
21 |
19 20
|
logcld |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( log ` A ) e. CC ) |
22 |
18 21
|
mulcld |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( k x. ( log ` A ) ) e. CC ) |
23 |
14 16 22
|
fprodefsum |
|- ( ph -> prod_ k e. ( 1 ... N ) ( exp ` ( k x. ( log ` A ) ) ) = ( exp ` sum_ k e. ( 1 ... N ) ( k x. ( log ` A ) ) ) ) |
24 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
25 |
3 5
|
logcld |
|- ( ph -> ( log ` A ) e. CC ) |
26 |
24 25 9
|
fsummulc1 |
|- ( ph -> ( sum_ k e. ( 1 ... N ) k x. ( log ` A ) ) = sum_ k e. ( 1 ... N ) ( k x. ( log ` A ) ) ) |
27 |
26
|
eqcomd |
|- ( ph -> sum_ k e. ( 1 ... N ) ( k x. ( log ` A ) ) = ( sum_ k e. ( 1 ... N ) k x. ( log ` A ) ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( exp ` sum_ k e. ( 1 ... N ) ( k x. ( log ` A ) ) ) = ( exp ` ( sum_ k e. ( 1 ... N ) k x. ( log ` A ) ) ) ) |
29 |
24 9
|
fsumcl |
|- ( ph -> sum_ k e. ( 1 ... N ) k e. CC ) |
30 |
3 5 29
|
cxpefd |
|- ( ph -> ( A ^c sum_ k e. ( 1 ... N ) k ) = ( exp ` ( sum_ k e. ( 1 ... N ) k x. ( log ` A ) ) ) ) |
31 |
30
|
eqcomd |
|- ( ph -> ( exp ` ( sum_ k e. ( 1 ... N ) k x. ( log ` A ) ) ) = ( A ^c sum_ k e. ( 1 ... N ) k ) ) |
32 |
28 31
|
eqtrd |
|- ( ph -> ( exp ` sum_ k e. ( 1 ... N ) ( k x. ( log ` A ) ) ) = ( A ^c sum_ k e. ( 1 ... N ) k ) ) |
33 |
23 32
|
eqtrd |
|- ( ph -> prod_ k e. ( 1 ... N ) ( exp ` ( k x. ( log ` A ) ) ) = ( A ^c sum_ k e. ( 1 ... N ) k ) ) |
34 |
13 33
|
eqtrd |
|- ( ph -> prod_ k e. ( 1 ... N ) ( A ^c k ) = ( A ^c sum_ k e. ( 1 ... N ) k ) ) |