| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p1p1.1 |
|
| 2 |
|
aks4d1p1p1.2 |
|
| 3 |
1
|
rpcnd |
|
| 4 |
3
|
adantr |
|
| 5 |
1
|
rpne0d |
|
| 6 |
5
|
adantr |
|
| 7 |
|
elfzelz |
|
| 8 |
7
|
zcnd |
|
| 9 |
8
|
adantl |
|
| 10 |
4 6 9
|
3jca |
|
| 11 |
|
cxpef |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
prodeq2dv |
|
| 14 |
|
eqid |
|
| 15 |
|
nnuz |
|
| 16 |
2 15
|
eleqtrdi |
|
| 17 |
|
eluzelcn |
|
| 18 |
17
|
adantl |
|
| 19 |
3
|
adantr |
|
| 20 |
5
|
adantr |
|
| 21 |
19 20
|
logcld |
|
| 22 |
18 21
|
mulcld |
|
| 23 |
14 16 22
|
fprodefsum |
|
| 24 |
|
fzfid |
|
| 25 |
3 5
|
logcld |
|
| 26 |
24 25 9
|
fsummulc1 |
|
| 27 |
26
|
eqcomd |
|
| 28 |
27
|
fveq2d |
|
| 29 |
24 9
|
fsumcl |
|
| 30 |
3 5 29
|
cxpefd |
|
| 31 |
30
|
eqcomd |
|
| 32 |
28 31
|
eqtrd |
|
| 33 |
23 32
|
eqtrd |
|
| 34 |
13 33
|
eqtrd |
|