Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p1p1.1 |
|
2 |
|
aks4d1p1p1.2 |
|
3 |
1
|
rpcnd |
|
4 |
3
|
adantr |
|
5 |
1
|
rpne0d |
|
6 |
5
|
adantr |
|
7 |
|
elfzelz |
|
8 |
7
|
zcnd |
|
9 |
8
|
adantl |
|
10 |
4 6 9
|
3jca |
|
11 |
|
cxpef |
|
12 |
10 11
|
syl |
|
13 |
12
|
prodeq2dv |
|
14 |
|
eqid |
|
15 |
|
nnuz |
|
16 |
2 15
|
eleqtrdi |
|
17 |
|
eluzelcn |
|
18 |
17
|
adantl |
|
19 |
3
|
adantr |
|
20 |
5
|
adantr |
|
21 |
19 20
|
logcld |
|
22 |
18 21
|
mulcld |
|
23 |
14 16 22
|
fprodefsum |
|
24 |
|
fzfid |
|
25 |
3 5
|
logcld |
|
26 |
24 25 9
|
fsummulc1 |
|
27 |
26
|
eqcomd |
|
28 |
27
|
fveq2d |
|
29 |
24 9
|
fsumcl |
|
30 |
3 5 29
|
cxpefd |
|
31 |
30
|
eqcomd |
|
32 |
28 31
|
eqtrd |
|
33 |
23 32
|
eqtrd |
|
34 |
13 33
|
eqtrd |
|