Metamath Proof Explorer


Theorem dvrelog2

Description: The derivative of the logarithm, ftc2 version. (Contributed by metakunt, 11-Aug-2024)

Ref Expression
Hypotheses dvrelog2.1 φ A
dvrelog2.2 φ B
dvrelog2.3 φ 0 < A
dvrelog2.4 φ A B
dvrelog2.5 F = x A B log x
dvrelog2.6 G = x A B 1 x
Assertion dvrelog2 φ D F = G

Proof

Step Hyp Ref Expression
1 dvrelog2.1 φ A
2 dvrelog2.2 φ B
3 dvrelog2.3 φ 0 < A
4 dvrelog2.4 φ A B
5 dvrelog2.5 F = x A B log x
6 dvrelog2.6 G = x A B 1 x
7 5 a1i φ F = x A B log x
8 7 oveq2d φ D F = dx A B log x d x
9 reelprrecn
10 9 a1i φ
11 rpssre +
12 ax-resscn
13 11 12 sstri +
14 13 sseli x + x
15 14 adantl φ x + x
16 rpne0 x + x 0
17 16 adantl φ x + x 0
18 15 17 logcld φ x + log x
19 1red x + 1
20 11 sseli x + x
21 19 20 16 redivcld x + 1 x
22 21 adantl φ x + 1 x
23 logf1o log : 0 1-1 onto ran log
24 f1of log : 0 1-1 onto ran log log : 0 ran log
25 23 24 ax-mp log : 0 ran log
26 25 a1i φ log : 0 ran log
27 0nrp ¬ 0 +
28 disjsn + 0 = ¬ 0 +
29 27 28 mpbir + 0 =
30 disjdif2 + 0 = + 0 = +
31 29 30 ax-mp + 0 = +
32 ssdif + + 0 0
33 13 32 ax-mp + 0 0
34 31 33 eqsstrri + 0
35 34 a1i φ + 0
36 26 35 feqresmpt φ log + = x + log x
37 36 eqcomd φ x + log x = log +
38 37 oveq2d φ dx + log x d x = D log +
39 dvrelog D log + = x + 1 x
40 39 a1i φ D log + = x + 1 x
41 38 40 eqtrd φ dx + log x d x = x + 1 x
42 elicc2 A B y A B y A y y B
43 1 2 42 syl2anc φ y A B y A y y B
44 43 biimpa φ y A B y A y y B
45 44 simp1d φ y A B y
46 0red φ y A B 0
47 1 adantr φ y A B A
48 3 adantr φ y A B 0 < A
49 44 simp2d φ y A B A y
50 46 47 45 48 49 ltletrd φ y A B 0 < y
51 45 50 jca φ y A B y 0 < y
52 elrp y + y 0 < y
53 51 52 sylibr φ y A B y +
54 53 ex φ y A B y +
55 54 ssrdv φ A B +
56 eqid TopOpen fld = TopOpen fld
57 56 tgioo2 topGen ran . = TopOpen fld 𝑡
58 iccntr A B int topGen ran . A B = A B
59 1 2 58 syl2anc φ int topGen ran . A B = A B
60 10 18 22 41 55 57 56 59 dvmptres2 φ dx A B log x d x = x A B 1 x
61 8 60 eqtrd φ D F = x A B 1 x
62 6 a1i φ G = x A B 1 x
63 62 eqcomd φ x A B 1 x = G
64 61 63 eqtrd φ D F = G