Metamath Proof Explorer


Theorem dvrelog2

Description: The derivative of the logarithm, ftc2 version. (Contributed by metakunt, 11-Aug-2024)

Ref Expression
Hypotheses dvrelog2.1 φA
dvrelog2.2 φB
dvrelog2.3 φ0<A
dvrelog2.4 φAB
dvrelog2.5 F=xABlogx
dvrelog2.6 G=xAB1x
Assertion dvrelog2 φDF=G

Proof

Step Hyp Ref Expression
1 dvrelog2.1 φA
2 dvrelog2.2 φB
3 dvrelog2.3 φ0<A
4 dvrelog2.4 φAB
5 dvrelog2.5 F=xABlogx
6 dvrelog2.6 G=xAB1x
7 5 a1i φF=xABlogx
8 7 oveq2d φDF=dxABlogxdx
9 reelprrecn
10 9 a1i φ
11 rpssre +
12 ax-resscn
13 11 12 sstri +
14 13 sseli x+x
15 14 adantl φx+x
16 rpne0 x+x0
17 16 adantl φx+x0
18 15 17 logcld φx+logx
19 1red x+1
20 11 sseli x+x
21 19 20 16 redivcld x+1x
22 21 adantl φx+1x
23 logf1o log:01-1 ontoranlog
24 f1of log:01-1 ontoranloglog:0ranlog
25 23 24 ax-mp log:0ranlog
26 25 a1i φlog:0ranlog
27 0nrp ¬0+
28 disjsn +0=¬0+
29 27 28 mpbir +0=
30 disjdif2 +0=+0=+
31 29 30 ax-mp +0=+
32 ssdif ++00
33 13 32 ax-mp +00
34 31 33 eqsstrri +0
35 34 a1i φ+0
36 26 35 feqresmpt φlog+=x+logx
37 36 eqcomd φx+logx=log+
38 37 oveq2d φdx+logxdx=Dlog+
39 dvrelog Dlog+=x+1x
40 39 a1i φDlog+=x+1x
41 38 40 eqtrd φdx+logxdx=x+1x
42 elicc2 AByAByAyyB
43 1 2 42 syl2anc φyAByAyyB
44 43 biimpa φyAByAyyB
45 44 simp1d φyABy
46 0red φyAB0
47 1 adantr φyABA
48 3 adantr φyAB0<A
49 44 simp2d φyABAy
50 46 47 45 48 49 ltletrd φyAB0<y
51 45 50 jca φyABy0<y
52 elrp y+y0<y
53 51 52 sylibr φyABy+
54 53 ex φyABy+
55 54 ssrdv φAB+
56 eqid TopOpenfld=TopOpenfld
57 56 tgioo2 topGenran.=TopOpenfld𝑡
58 iccntr ABinttopGenran.AB=AB
59 1 2 58 syl2anc φinttopGenran.AB=AB
60 10 18 22 41 55 57 56 59 dvmptres2 φdxABlogxdx=xAB1x
61 8 60 eqtrd φDF=xAB1x
62 6 a1i φG=xAB1x
63 62 eqcomd φxAB1x=G
64 61 63 eqtrd φDF=G