Metamath Proof Explorer


Theorem dvrelog3

Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024)

Ref Expression
Hypotheses dvrelog3.1 φA*
dvrelog3.2 φB*
dvrelog3.3 φ0A
dvrelog3.4 φAB
dvrelog3.5 F=xABlogx
dvrelog3.6 G=xAB1x
Assertion dvrelog3 φDF=G

Proof

Step Hyp Ref Expression
1 dvrelog3.1 φA*
2 dvrelog3.2 φB*
3 dvrelog3.3 φ0A
4 dvrelog3.4 φAB
5 dvrelog3.5 F=xABlogx
6 dvrelog3.6 G=xAB1x
7 5 a1i φF=xABlogx
8 7 oveq2d φDF=dxABlogxdx
9 reelprrecn
10 9 a1i φ
11 rpcn x+x
12 11 adantl φx+x
13 rpne0 x+x0
14 13 adantl φx+x0
15 12 14 logcld φx+logx
16 1red φx+1
17 rpre x+x
18 17 adantl φx+x
19 16 18 14 redivcld φx+1x
20 logf1o log:01-1 ontoranlog
21 f1of log:01-1 ontoranloglog:0ranlog
22 20 21 ax-mp log:0ranlog
23 22 a1i φlog:0ranlog
24 0nrp ¬0+
25 disjsn +0=¬0+
26 24 25 mpbir +0=
27 disjdif2 +0=+0=+
28 26 27 ax-mp +0=+
29 rpssre +
30 ax-resscn
31 29 30 sstri +
32 ssdif ++00
33 31 32 ax-mp +00
34 28 33 eqsstrri +0
35 34 a1i φ+0
36 23 35 feqresmpt φlog+=x+logx
37 36 eqcomd φx+logx=log+
38 37 oveq2d φdx+logxdx=Dlog+
39 dvrelog Dlog+=x+1x
40 39 a1i φDlog+=x+1x
41 38 40 eqtrd φdx+logxdx=x+1x
42 elioo2 A*B*yAByA<yy<B
43 1 2 42 syl2anc φyAByA<yy<B
44 43 biimpa φyAByA<yy<B
45 44 simp1d φyABy
46 0red φyAB0
47 46 rexrd φyAB0*
48 1 adantr φyABA*
49 45 rexrd φyABy*
50 3 adantr φyAB0A
51 44 simp2d φyABA<y
52 47 48 49 50 51 xrlelttrd φyAB0<y
53 45 52 jca φyABy0<y
54 elrp y+y0<y
55 53 54 sylibr φyABy+
56 55 ex φyABy+
57 56 ssrdv φAB+
58 eqid TopOpenfld=TopOpenfld
59 58 tgioo2 topGenran.=TopOpenfld𝑡
60 retop topGenran.Top
61 60 a1i φtopGenran.Top
62 iooretop ABtopGenran.
63 62 a1i φABtopGenran.
64 isopn3i topGenran.TopABtopGenran.inttopGenran.AB=AB
65 61 63 64 syl2anc φinttopGenran.AB=AB
66 10 15 19 41 57 59 58 65 dvmptres2 φdxABlogxdx=xAB1x
67 8 66 eqtrd φDF=xAB1x
68 6 a1i φG=xAB1x
69 68 eqcomd φxAB1x=G
70 67 69 eqtrd φDF=G