Metamath Proof Explorer


Theorem dvrelog3

Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024)

Ref Expression
Hypotheses dvrelog3.1 φ A *
dvrelog3.2 φ B *
dvrelog3.3 φ 0 A
dvrelog3.4 φ A B
dvrelog3.5 F = x A B log x
dvrelog3.6 G = x A B 1 x
Assertion dvrelog3 φ D F = G

Proof

Step Hyp Ref Expression
1 dvrelog3.1 φ A *
2 dvrelog3.2 φ B *
3 dvrelog3.3 φ 0 A
4 dvrelog3.4 φ A B
5 dvrelog3.5 F = x A B log x
6 dvrelog3.6 G = x A B 1 x
7 5 a1i φ F = x A B log x
8 7 oveq2d φ D F = dx A B log x d x
9 reelprrecn
10 9 a1i φ
11 rpcn x + x
12 11 adantl φ x + x
13 rpne0 x + x 0
14 13 adantl φ x + x 0
15 12 14 logcld φ x + log x
16 1red φ x + 1
17 rpre x + x
18 17 adantl φ x + x
19 16 18 14 redivcld φ x + 1 x
20 logf1o log : 0 1-1 onto ran log
21 f1of log : 0 1-1 onto ran log log : 0 ran log
22 20 21 ax-mp log : 0 ran log
23 22 a1i φ log : 0 ran log
24 0nrp ¬ 0 +
25 disjsn + 0 = ¬ 0 +
26 24 25 mpbir + 0 =
27 disjdif2 + 0 = + 0 = +
28 26 27 ax-mp + 0 = +
29 rpssre +
30 ax-resscn
31 29 30 sstri +
32 ssdif + + 0 0
33 31 32 ax-mp + 0 0
34 28 33 eqsstrri + 0
35 34 a1i φ + 0
36 23 35 feqresmpt φ log + = x + log x
37 36 eqcomd φ x + log x = log +
38 37 oveq2d φ dx + log x d x = D log +
39 dvrelog D log + = x + 1 x
40 39 a1i φ D log + = x + 1 x
41 38 40 eqtrd φ dx + log x d x = x + 1 x
42 elioo2 A * B * y A B y A < y y < B
43 1 2 42 syl2anc φ y A B y A < y y < B
44 43 biimpa φ y A B y A < y y < B
45 44 simp1d φ y A B y
46 0red φ y A B 0
47 46 rexrd φ y A B 0 *
48 1 adantr φ y A B A *
49 45 rexrd φ y A B y *
50 3 adantr φ y A B 0 A
51 44 simp2d φ y A B A < y
52 47 48 49 50 51 xrlelttrd φ y A B 0 < y
53 45 52 jca φ y A B y 0 < y
54 elrp y + y 0 < y
55 53 54 sylibr φ y A B y +
56 55 ex φ y A B y +
57 56 ssrdv φ A B +
58 eqid TopOpen fld = TopOpen fld
59 58 tgioo2 topGen ran . = TopOpen fld 𝑡
60 retop topGen ran . Top
61 60 a1i φ topGen ran . Top
62 iooretop A B topGen ran .
63 62 a1i φ A B topGen ran .
64 isopn3i topGen ran . Top A B topGen ran . int topGen ran . A B = A B
65 61 63 64 syl2anc φ int topGen ran . A B = A B
66 10 15 19 41 57 59 58 65 dvmptres2 φ dx A B log x d x = x A B 1 x
67 8 66 eqtrd φ D F = x A B 1 x
68 6 a1i φ G = x A B 1 x
69 68 eqcomd φ x A B 1 x = G
70 67 69 eqtrd φ D F = G