Description: The derivative of the logarithm on an open interval. (Contributed by metakunt, 11-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvrelog3.1 | |
|
dvrelog3.2 | |
||
dvrelog3.3 | |
||
dvrelog3.4 | |
||
dvrelog3.5 | |
||
dvrelog3.6 | |
||
Assertion | dvrelog3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrelog3.1 | |
|
2 | dvrelog3.2 | |
|
3 | dvrelog3.3 | |
|
4 | dvrelog3.4 | |
|
5 | dvrelog3.5 | |
|
6 | dvrelog3.6 | |
|
7 | 5 | a1i | |
8 | 7 | oveq2d | |
9 | reelprrecn | |
|
10 | 9 | a1i | |
11 | rpcn | |
|
12 | 11 | adantl | |
13 | rpne0 | |
|
14 | 13 | adantl | |
15 | 12 14 | logcld | |
16 | 1red | |
|
17 | rpre | |
|
18 | 17 | adantl | |
19 | 16 18 14 | redivcld | |
20 | logf1o | |
|
21 | f1of | |
|
22 | 20 21 | ax-mp | |
23 | 22 | a1i | |
24 | 0nrp | |
|
25 | disjsn | |
|
26 | 24 25 | mpbir | |
27 | disjdif2 | |
|
28 | 26 27 | ax-mp | |
29 | rpssre | |
|
30 | ax-resscn | |
|
31 | 29 30 | sstri | |
32 | ssdif | |
|
33 | 31 32 | ax-mp | |
34 | 28 33 | eqsstrri | |
35 | 34 | a1i | |
36 | 23 35 | feqresmpt | |
37 | 36 | eqcomd | |
38 | 37 | oveq2d | |
39 | dvrelog | |
|
40 | 39 | a1i | |
41 | 38 40 | eqtrd | |
42 | elioo2 | |
|
43 | 1 2 42 | syl2anc | |
44 | 43 | biimpa | |
45 | 44 | simp1d | |
46 | 0red | |
|
47 | 46 | rexrd | |
48 | 1 | adantr | |
49 | 45 | rexrd | |
50 | 3 | adantr | |
51 | 44 | simp2d | |
52 | 47 48 49 50 51 | xrlelttrd | |
53 | 45 52 | jca | |
54 | elrp | |
|
55 | 53 54 | sylibr | |
56 | 55 | ex | |
57 | 56 | ssrdv | |
58 | eqid | |
|
59 | 58 | tgioo2 | |
60 | retop | |
|
61 | 60 | a1i | |
62 | iooretop | |
|
63 | 62 | a1i | |
64 | isopn3i | |
|
65 | 61 63 64 | syl2anc | |
66 | 10 15 19 41 57 59 58 65 | dvmptres2 | |
67 | 8 66 | eqtrd | |
68 | 6 | a1i | |
69 | 68 | eqcomd | |
70 | 67 69 | eqtrd | |