| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p1p1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
aks4d1p1p1.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 5 |
1
|
rpne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ≠ 0 ) |
| 7 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 8 |
7
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 10 |
4 6 9
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑘 ∈ ℂ ) ) |
| 11 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑘 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝑘 ) = ( exp ‘ ( 𝑘 · ( log ‘ 𝐴 ) ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ↑𝑐 𝑘 ) = ( exp ‘ ( 𝑘 · ( log ‘ 𝐴 ) ) ) ) |
| 13 |
12
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 ↑𝑐 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( exp ‘ ( 𝑘 · ( log ‘ 𝐴 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) |
| 15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 16 |
2 15
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 17 |
|
eluzelcn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → 𝑘 ∈ ℂ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑘 ∈ ℂ ) |
| 19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝐴 ∈ ℂ ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → 𝐴 ≠ 0 ) |
| 21 |
19 20
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 22 |
18 21
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝑘 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 23 |
14 16 22
|
fprodefsum |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( exp ‘ ( 𝑘 · ( log ‘ 𝐴 ) ) ) = ( exp ‘ Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 · ( log ‘ 𝐴 ) ) ) ) |
| 24 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 25 |
3 5
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 26 |
24 25 9
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 · ( log ‘ 𝐴 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 · ( log ‘ 𝐴 ) ) ) |
| 27 |
26
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 · ( log ‘ 𝐴 ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 · ( log ‘ 𝐴 ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 · ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 · ( log ‘ 𝐴 ) ) ) ) |
| 29 |
24 9
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ∈ ℂ ) |
| 30 |
3 5 29
|
cxpefd |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) = ( exp ‘ ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 · ( log ‘ 𝐴 ) ) ) ) |
| 31 |
30
|
eqcomd |
⊢ ( 𝜑 → ( exp ‘ ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 · ( log ‘ 𝐴 ) ) ) = ( 𝐴 ↑𝑐 Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ) |
| 32 |
28 31
|
eqtrd |
⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 · ( log ‘ 𝐴 ) ) ) = ( 𝐴 ↑𝑐 Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ) |
| 33 |
23 32
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( exp ‘ ( 𝑘 · ( log ‘ 𝐴 ) ) ) = ( 𝐴 ↑𝑐 Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ) |
| 34 |
13 33
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 ↑𝑐 𝑘 ) = ( 𝐴 ↑𝑐 Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ) |