| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodefsum.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
fprodefsum.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 3 |
|
fprodefsum.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 4 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑀 ) ) |
| 6 |
5
|
prodeq1d |
⊢ ( 𝑎 = 𝑀 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 7 |
5
|
sumeq1d |
⊢ ( 𝑎 = 𝑀 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑎 = 𝑀 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 9 |
6 8
|
eqeq12d |
⊢ ( 𝑎 = 𝑀 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑛 ) ) |
| 12 |
11
|
prodeq1d |
⊢ ( 𝑎 = 𝑛 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 13 |
11
|
sumeq1d |
⊢ ( 𝑎 = 𝑛 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑎 = 𝑛 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( 𝑎 = 𝑛 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... ( 𝑛 + 1 ) ) ) |
| 18 |
17
|
prodeq1d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 19 |
17
|
sumeq1d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 21 |
18 20
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑁 ) ) |
| 24 |
23
|
prodeq1d |
⊢ ( 𝑎 = 𝑁 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 25 |
23
|
sumeq1d |
⊢ ( 𝑎 = 𝑁 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑎 = 𝑁 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 27 |
24 26
|
eqeq12d |
⊢ ( 𝑎 = 𝑁 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 29 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 31 |
30
|
prodeq1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 33 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 34 |
33 1
|
eleqtrrdi |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ 𝑍 ) |
| 35 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 36 |
3 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 37 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) : 𝑍 ⟶ ℂ ) |
| 38 |
37
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) |
| 39 |
34 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) |
| 40 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
| 41 |
40
|
prodsn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) → ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
| 42 |
32 39 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
| 43 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ 𝑍 ) |
| 44 |
|
fvex |
⊢ ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ V |
| 45 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑀 |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑘 exp |
| 47 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 |
| 48 |
46 47
|
nffv |
⊢ Ⅎ 𝑘 ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 49 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑀 → 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝑘 = 𝑀 → ( exp ‘ 𝐴 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 51 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) |
| 52 |
45 48 50 51
|
fvmptf |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 53 |
43 44 52
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 54 |
31 42 53
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 55 |
30
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 56 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ℂ ) |
| 57 |
56
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) |
| 58 |
34 57
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) |
| 59 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
| 60 |
59
|
sumsn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
| 61 |
32 58 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
| 62 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| 63 |
47
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 64 |
49
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 65 |
63 64
|
rspc |
⊢ ( 𝑀 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 66 |
65
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ∧ 𝑀 ∈ 𝑍 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 67 |
62 34 66
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 68 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) |
| 69 |
68
|
fvmpts |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 70 |
43 67 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 71 |
55 61 70
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 73 |
54 72
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 74 |
73
|
expcom |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 75 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 76 |
1
|
peano2uzs |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 77 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 78 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 |
| 79 |
78
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 80 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝐴 = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 81 |
80
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐴 ∈ ℂ ↔ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 82 |
79 81
|
rspc |
⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 83 |
62 82
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 84 |
|
efcl |
⊢ ( ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ → ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 86 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑛 + 1 ) |
| 87 |
46 78
|
nffv |
⊢ Ⅎ 𝑘 ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 88 |
80
|
fveq2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( exp ‘ 𝐴 ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 89 |
86 87 88 51
|
fvmptf |
⊢ ( ( ( 𝑛 + 1 ) ∈ 𝑍 ∧ ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 90 |
77 85 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 91 |
68
|
fvmpts |
⊢ ( ( ( 𝑛 + 1 ) ∈ 𝑍 ∧ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 92 |
77 83 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 93 |
92
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 94 |
90 93
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 95 |
76 94
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 96 |
95
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 97 |
75 96
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 98 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 99 |
98 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 100 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 101 |
100 1
|
eleqtrrdi |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑚 ∈ 𝑍 ) |
| 102 |
37
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 103 |
101 102
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 104 |
103
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 105 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 106 |
99 104 105
|
fprodp1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 107 |
106
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 108 |
56
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 109 |
101 108
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 110 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 111 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) |
| 112 |
99 110 111
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 113 |
112
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 114 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
| 115 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 116 |
115 1
|
eleqtrrdi |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) → 𝑚 ∈ 𝑍 ) |
| 117 |
116 108
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 118 |
117
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 119 |
114 118
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 120 |
56
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 121 |
76 120
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 122 |
|
efadd |
⊢ ( ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ∧ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) → ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 123 |
119 121 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 124 |
113 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 125 |
124
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 126 |
97 107 125
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 127 |
126
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 128 |
127
|
com12 |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝜑 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 129 |
128
|
a2d |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 130 |
1
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 131 |
129 130
|
eleq2s |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
| 132 |
10 16 22 28 74 131
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
| 133 |
4 132
|
mpcom |
⊢ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 134 |
|
fvres |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 135 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
| 136 |
135 1
|
sseqtrri |
⊢ ( 𝑀 ... 𝑁 ) ⊆ 𝑍 |
| 137 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ) |
| 138 |
136 137
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) |
| 139 |
138
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) |
| 140 |
134 139
|
eqtr3di |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
| 141 |
140
|
prodeq2i |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) |
| 142 |
|
prodfc |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) |
| 143 |
141 142
|
eqtri |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) |
| 144 |
|
fvres |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 145 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) |
| 146 |
136 145
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) |
| 147 |
146
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 148 |
144 147
|
eqtr3di |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 149 |
148
|
sumeq2i |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 150 |
|
sumfc |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 |
| 151 |
149 150
|
eqtri |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 |
| 152 |
151
|
fveq2i |
⊢ ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
| 153 |
133 143 152
|
3eqtr3g |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) ) |