Step |
Hyp |
Ref |
Expression |
1 |
|
fprodefsum.1 |
β’ π = ( β€β₯ β π ) |
2 |
|
fprodefsum.2 |
β’ ( π β π β π ) |
3 |
|
fprodefsum.3 |
β’ ( ( π β§ π β π ) β π΄ β β ) |
4 |
2 1
|
eleqtrdi |
β’ ( π β π β ( β€β₯ β π ) ) |
5 |
|
oveq2 |
β’ ( π = π β ( π ... π ) = ( π ... π ) ) |
6 |
5
|
prodeq1d |
β’ ( π = π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
7 |
5
|
sumeq1d |
β’ ( π = π β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) |
8 |
7
|
fveq2d |
β’ ( π = π β ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) |
9 |
6 8
|
eqeq12d |
β’ ( π = π β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) |
10 |
9
|
imbi2d |
β’ ( π = π β ( ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
11 |
|
oveq2 |
β’ ( π = π β ( π ... π ) = ( π ... π ) ) |
12 |
11
|
prodeq1d |
β’ ( π = π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
13 |
11
|
sumeq1d |
β’ ( π = π β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) |
14 |
13
|
fveq2d |
β’ ( π = π β ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) |
15 |
12 14
|
eqeq12d |
β’ ( π = π β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) |
16 |
15
|
imbi2d |
β’ ( π = π β ( ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
17 |
|
oveq2 |
β’ ( π = ( π + 1 ) β ( π ... π ) = ( π ... ( π + 1 ) ) ) |
18 |
17
|
prodeq1d |
β’ ( π = ( π + 1 ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
19 |
17
|
sumeq1d |
β’ ( π = ( π + 1 ) β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) |
20 |
19
|
fveq2d |
β’ ( π = ( π + 1 ) β ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) |
21 |
18 20
|
eqeq12d |
β’ ( π = ( π + 1 ) β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) ) |
22 |
21
|
imbi2d |
β’ ( π = ( π + 1 ) β ( ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( π β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
23 |
|
oveq2 |
β’ ( π = π β ( π ... π ) = ( π ... π ) ) |
24 |
23
|
prodeq1d |
β’ ( π = π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
25 |
23
|
sumeq1d |
β’ ( π = π β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) |
26 |
25
|
fveq2d |
β’ ( π = π β ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) |
27 |
24 26
|
eqeq12d |
β’ ( π = π β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) |
28 |
27
|
imbi2d |
β’ ( π = π β ( ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
29 |
|
fzsn |
β’ ( π β β€ β ( π ... π ) = { π } ) |
30 |
29
|
adantl |
β’ ( ( π β§ π β β€ ) β ( π ... π ) = { π } ) |
31 |
30
|
prodeq1d |
β’ ( ( π β§ π β β€ ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β { π } ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
32 |
|
simpr |
β’ ( ( π β§ π β β€ ) β π β β€ ) |
33 |
|
uzid |
β’ ( π β β€ β π β ( β€β₯ β π ) ) |
34 |
33 1
|
eleqtrrdi |
β’ ( π β β€ β π β π ) |
35 |
|
efcl |
β’ ( π΄ β β β ( exp β π΄ ) β β ) |
36 |
3 35
|
syl |
β’ ( ( π β§ π β π ) β ( exp β π΄ ) β β ) |
37 |
36
|
fmpttd |
β’ ( π β ( π β π β¦ ( exp β π΄ ) ) : π βΆ β ) |
38 |
37
|
ffvelcdmda |
β’ ( ( π β§ π β π ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) β β ) |
39 |
34 38
|
sylan2 |
β’ ( ( π β§ π β β€ ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) β β ) |
40 |
|
fveq2 |
β’ ( π = π β ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
41 |
40
|
prodsn |
β’ ( ( π β β€ β§ ( ( π β π β¦ ( exp β π΄ ) ) β π ) β β ) β β π β { π } ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
42 |
32 39 41
|
syl2anc |
β’ ( ( π β§ π β β€ ) β β π β { π } ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
43 |
34
|
adantl |
β’ ( ( π β§ π β β€ ) β π β π ) |
44 |
|
fvex |
β’ ( exp β β¦ π / π β¦ π΄ ) β V |
45 |
|
nfcv |
β’ β² π π |
46 |
|
nfcv |
β’ β² π exp |
47 |
|
nfcsb1v |
β’ β² π β¦ π / π β¦ π΄ |
48 |
46 47
|
nffv |
β’ β² π ( exp β β¦ π / π β¦ π΄ ) |
49 |
|
csbeq1a |
β’ ( π = π β π΄ = β¦ π / π β¦ π΄ ) |
50 |
49
|
fveq2d |
β’ ( π = π β ( exp β π΄ ) = ( exp β β¦ π / π β¦ π΄ ) ) |
51 |
|
eqid |
β’ ( π β π β¦ ( exp β π΄ ) ) = ( π β π β¦ ( exp β π΄ ) ) |
52 |
45 48 50 51
|
fvmptf |
β’ ( ( π β π β§ ( exp β β¦ π / π β¦ π΄ ) β V ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β β¦ π / π β¦ π΄ ) ) |
53 |
43 44 52
|
sylancl |
β’ ( ( π β§ π β β€ ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β β¦ π / π β¦ π΄ ) ) |
54 |
31 42 53
|
3eqtrd |
β’ ( ( π β§ π β β€ ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β β¦ π / π β¦ π΄ ) ) |
55 |
30
|
sumeq1d |
β’ ( ( π β§ π β β€ ) β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β { π } ( ( π β π β¦ π΄ ) β π ) ) |
56 |
3
|
fmpttd |
β’ ( π β ( π β π β¦ π΄ ) : π βΆ β ) |
57 |
56
|
ffvelcdmda |
β’ ( ( π β§ π β π ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
58 |
34 57
|
sylan2 |
β’ ( ( π β§ π β β€ ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
59 |
|
fveq2 |
β’ ( π = π β ( ( π β π β¦ π΄ ) β π ) = ( ( π β π β¦ π΄ ) β π ) ) |
60 |
59
|
sumsn |
β’ ( ( π β β€ β§ ( ( π β π β¦ π΄ ) β π ) β β ) β Ξ£ π β { π } ( ( π β π β¦ π΄ ) β π ) = ( ( π β π β¦ π΄ ) β π ) ) |
61 |
32 58 60
|
syl2anc |
β’ ( ( π β§ π β β€ ) β Ξ£ π β { π } ( ( π β π β¦ π΄ ) β π ) = ( ( π β π β¦ π΄ ) β π ) ) |
62 |
3
|
ralrimiva |
β’ ( π β β π β π π΄ β β ) |
63 |
47
|
nfel1 |
β’ β² π β¦ π / π β¦ π΄ β β |
64 |
49
|
eleq1d |
β’ ( π = π β ( π΄ β β β β¦ π / π β¦ π΄ β β ) ) |
65 |
63 64
|
rspc |
β’ ( π β π β ( β π β π π΄ β β β β¦ π / π β¦ π΄ β β ) ) |
66 |
65
|
impcom |
β’ ( ( β π β π π΄ β β β§ π β π ) β β¦ π / π β¦ π΄ β β ) |
67 |
62 34 66
|
syl2an |
β’ ( ( π β§ π β β€ ) β β¦ π / π β¦ π΄ β β ) |
68 |
|
eqid |
β’ ( π β π β¦ π΄ ) = ( π β π β¦ π΄ ) |
69 |
68
|
fvmpts |
β’ ( ( π β π β§ β¦ π / π β¦ π΄ β β ) β ( ( π β π β¦ π΄ ) β π ) = β¦ π / π β¦ π΄ ) |
70 |
43 67 69
|
syl2anc |
β’ ( ( π β§ π β β€ ) β ( ( π β π β¦ π΄ ) β π ) = β¦ π / π β¦ π΄ ) |
71 |
55 61 70
|
3eqtrd |
β’ ( ( π β§ π β β€ ) β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = β¦ π / π β¦ π΄ ) |
72 |
71
|
fveq2d |
β’ ( ( π β§ π β β€ ) β ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β β¦ π / π β¦ π΄ ) ) |
73 |
54 72
|
eqtr4d |
β’ ( ( π β§ π β β€ ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) |
74 |
73
|
expcom |
β’ ( π β β€ β ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) |
75 |
|
simp3 |
β’ ( ( π β§ π β π β§ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) |
76 |
1
|
peano2uzs |
β’ ( π β π β ( π + 1 ) β π ) |
77 |
|
simpr |
β’ ( ( π β§ ( π + 1 ) β π ) β ( π + 1 ) β π ) |
78 |
|
nfcsb1v |
β’ β² π β¦ ( π + 1 ) / π β¦ π΄ |
79 |
78
|
nfel1 |
β’ β² π β¦ ( π + 1 ) / π β¦ π΄ β β |
80 |
|
csbeq1a |
β’ ( π = ( π + 1 ) β π΄ = β¦ ( π + 1 ) / π β¦ π΄ ) |
81 |
80
|
eleq1d |
β’ ( π = ( π + 1 ) β ( π΄ β β β β¦ ( π + 1 ) / π β¦ π΄ β β ) ) |
82 |
79 81
|
rspc |
β’ ( ( π + 1 ) β π β ( β π β π π΄ β β β β¦ ( π + 1 ) / π β¦ π΄ β β ) ) |
83 |
62 82
|
mpan9 |
β’ ( ( π β§ ( π + 1 ) β π ) β β¦ ( π + 1 ) / π β¦ π΄ β β ) |
84 |
|
efcl |
β’ ( β¦ ( π + 1 ) / π β¦ π΄ β β β ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) β β ) |
85 |
83 84
|
syl |
β’ ( ( π β§ ( π + 1 ) β π ) β ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) β β ) |
86 |
|
nfcv |
β’ β² π ( π + 1 ) |
87 |
46 78
|
nffv |
β’ β² π ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) |
88 |
80
|
fveq2d |
β’ ( π = ( π + 1 ) β ( exp β π΄ ) = ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) ) |
89 |
86 87 88 51
|
fvmptf |
β’ ( ( ( π + 1 ) β π β§ ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) β β ) β ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) = ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) ) |
90 |
77 85 89
|
syl2anc |
β’ ( ( π β§ ( π + 1 ) β π ) β ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) = ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) ) |
91 |
68
|
fvmpts |
β’ ( ( ( π + 1 ) β π β§ β¦ ( π + 1 ) / π β¦ π΄ β β ) β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) = β¦ ( π + 1 ) / π β¦ π΄ ) |
92 |
77 83 91
|
syl2anc |
β’ ( ( π β§ ( π + 1 ) β π ) β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) = β¦ ( π + 1 ) / π β¦ π΄ ) |
93 |
92
|
fveq2d |
β’ ( ( π β§ ( π + 1 ) β π ) β ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) = ( exp β β¦ ( π + 1 ) / π β¦ π΄ ) ) |
94 |
90 93
|
eqtr4d |
β’ ( ( π β§ ( π + 1 ) β π ) β ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) = ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) |
95 |
76 94
|
sylan2 |
β’ ( ( π β§ π β π ) β ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) = ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) |
96 |
95
|
3adant3 |
β’ ( ( π β§ π β π β§ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) = ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) |
97 |
75 96
|
oveq12d |
β’ ( ( π β§ π β π β§ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) Β· ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) ) = ( ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) Β· ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) ) |
98 |
|
simpr |
β’ ( ( π β§ π β π ) β π β π ) |
99 |
98 1
|
eleqtrdi |
β’ ( ( π β§ π β π ) β π β ( β€β₯ β π ) ) |
100 |
|
elfzuz |
β’ ( π β ( π ... ( π + 1 ) ) β π β ( β€β₯ β π ) ) |
101 |
100 1
|
eleqtrrdi |
β’ ( π β ( π ... ( π + 1 ) ) β π β π ) |
102 |
37
|
ffvelcdmda |
β’ ( ( π β§ π β π ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) β β ) |
103 |
101 102
|
sylan2 |
β’ ( ( π β§ π β ( π ... ( π + 1 ) ) ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) β β ) |
104 |
103
|
adantlr |
β’ ( ( ( π β§ π β π ) β§ π β ( π ... ( π + 1 ) ) ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) β β ) |
105 |
|
fveq2 |
β’ ( π = ( π + 1 ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) ) |
106 |
99 104 105
|
fprodp1 |
β’ ( ( π β§ π β π ) β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) Β· ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) ) ) |
107 |
106
|
3adant3 |
β’ ( ( π β§ π β π β§ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) Β· ( ( π β π β¦ ( exp β π΄ ) ) β ( π + 1 ) ) ) ) |
108 |
56
|
ffvelcdmda |
β’ ( ( π β§ π β π ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
109 |
101 108
|
sylan2 |
β’ ( ( π β§ π β ( π ... ( π + 1 ) ) ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
110 |
109
|
adantlr |
β’ ( ( ( π β§ π β π ) β§ π β ( π ... ( π + 1 ) ) ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
111 |
|
fveq2 |
β’ ( π = ( π + 1 ) β ( ( π β π β¦ π΄ ) β π ) = ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) |
112 |
99 110 111
|
fsump1 |
β’ ( ( π β§ π β π ) β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) = ( Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) + ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) |
113 |
112
|
fveq2d |
β’ ( ( π β§ π β π ) β ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β ( Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) + ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) ) |
114 |
|
fzfid |
β’ ( ( π β§ π β π ) β ( π ... π ) β Fin ) |
115 |
|
elfzuz |
β’ ( π β ( π ... π ) β π β ( β€β₯ β π ) ) |
116 |
115 1
|
eleqtrrdi |
β’ ( π β ( π ... π ) β π β π ) |
117 |
116 108
|
sylan2 |
β’ ( ( π β§ π β ( π ... π ) ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
118 |
117
|
adantlr |
β’ ( ( ( π β§ π β π ) β§ π β ( π ... π ) ) β ( ( π β π β¦ π΄ ) β π ) β β ) |
119 |
114 118
|
fsumcl |
β’ ( ( π β§ π β π ) β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) β β ) |
120 |
56
|
ffvelcdmda |
β’ ( ( π β§ ( π + 1 ) β π ) β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) β β ) |
121 |
76 120
|
sylan2 |
β’ ( ( π β§ π β π ) β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) β β ) |
122 |
|
efadd |
β’ ( ( Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) β β β§ ( ( π β π β¦ π΄ ) β ( π + 1 ) ) β β ) β ( exp β ( Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) + ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) = ( ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) Β· ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) ) |
123 |
119 121 122
|
syl2anc |
β’ ( ( π β§ π β π ) β ( exp β ( Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) + ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) = ( ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) Β· ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) ) |
124 |
113 123
|
eqtrd |
β’ ( ( π β§ π β π ) β ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) = ( ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) Β· ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) ) |
125 |
124
|
3adant3 |
β’ ( ( π β§ π β π β§ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) = ( ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) Β· ( exp β ( ( π β π β¦ π΄ ) β ( π + 1 ) ) ) ) ) |
126 |
97 107 125
|
3eqtr4d |
β’ ( ( π β§ π β π β§ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) |
127 |
126
|
3exp |
β’ ( π β ( π β π β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
128 |
127
|
com12 |
β’ ( π β π β ( π β ( β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
129 |
128
|
a2d |
β’ ( π β π β ( ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( π β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
130 |
1
|
eqcomi |
β’ ( β€β₯ β π ) = π |
131 |
129 130
|
eleq2s |
β’ ( π β ( β€β₯ β π ) β ( ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) β ( π β β π β ( π ... ( π + 1 ) ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... ( π + 1 ) ) ( ( π β π β¦ π΄ ) β π ) ) ) ) ) |
132 |
10 16 22 28 74 131
|
uzind4 |
β’ ( π β ( β€β₯ β π ) β ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) ) |
133 |
4 132
|
mpcom |
β’ ( π β β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) ) |
134 |
|
fvres |
β’ ( π β ( π ... π ) β ( ( ( π β π β¦ ( exp β π΄ ) ) βΎ ( π ... π ) ) β π ) = ( ( π β π β¦ ( exp β π΄ ) ) β π ) ) |
135 |
|
fzssuz |
β’ ( π ... π ) β ( β€β₯ β π ) |
136 |
135 1
|
sseqtrri |
β’ ( π ... π ) β π |
137 |
|
resmpt |
β’ ( ( π ... π ) β π β ( ( π β π β¦ ( exp β π΄ ) ) βΎ ( π ... π ) ) = ( π β ( π ... π ) β¦ ( exp β π΄ ) ) ) |
138 |
136 137
|
ax-mp |
β’ ( ( π β π β¦ ( exp β π΄ ) ) βΎ ( π ... π ) ) = ( π β ( π ... π ) β¦ ( exp β π΄ ) ) |
139 |
138
|
fveq1i |
β’ ( ( ( π β π β¦ ( exp β π΄ ) ) βΎ ( π ... π ) ) β π ) = ( ( π β ( π ... π ) β¦ ( exp β π΄ ) ) β π ) |
140 |
134 139
|
eqtr3di |
β’ ( π β ( π ... π ) β ( ( π β π β¦ ( exp β π΄ ) ) β π ) = ( ( π β ( π ... π ) β¦ ( exp β π΄ ) ) β π ) ) |
141 |
140
|
prodeq2i |
β’ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... π ) ( ( π β ( π ... π ) β¦ ( exp β π΄ ) ) β π ) |
142 |
|
prodfc |
β’ β π β ( π ... π ) ( ( π β ( π ... π ) β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... π ) ( exp β π΄ ) |
143 |
141 142
|
eqtri |
β’ β π β ( π ... π ) ( ( π β π β¦ ( exp β π΄ ) ) β π ) = β π β ( π ... π ) ( exp β π΄ ) |
144 |
|
fvres |
β’ ( π β ( π ... π ) β ( ( ( π β π β¦ π΄ ) βΎ ( π ... π ) ) β π ) = ( ( π β π β¦ π΄ ) β π ) ) |
145 |
|
resmpt |
β’ ( ( π ... π ) β π β ( ( π β π β¦ π΄ ) βΎ ( π ... π ) ) = ( π β ( π ... π ) β¦ π΄ ) ) |
146 |
136 145
|
ax-mp |
β’ ( ( π β π β¦ π΄ ) βΎ ( π ... π ) ) = ( π β ( π ... π ) β¦ π΄ ) |
147 |
146
|
fveq1i |
β’ ( ( ( π β π β¦ π΄ ) βΎ ( π ... π ) ) β π ) = ( ( π β ( π ... π ) β¦ π΄ ) β π ) |
148 |
144 147
|
eqtr3di |
β’ ( π β ( π ... π ) β ( ( π β π β¦ π΄ ) β π ) = ( ( π β ( π ... π ) β¦ π΄ ) β π ) ) |
149 |
148
|
sumeq2i |
β’ Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β ( π ... π ) ( ( π β ( π ... π ) β¦ π΄ ) β π ) |
150 |
|
sumfc |
β’ Ξ£ π β ( π ... π ) ( ( π β ( π ... π ) β¦ π΄ ) β π ) = Ξ£ π β ( π ... π ) π΄ |
151 |
149 150
|
eqtri |
β’ Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) = Ξ£ π β ( π ... π ) π΄ |
152 |
151
|
fveq2i |
β’ ( exp β Ξ£ π β ( π ... π ) ( ( π β π β¦ π΄ ) β π ) ) = ( exp β Ξ£ π β ( π ... π ) π΄ ) |
153 |
133 143 152
|
3eqtr3g |
β’ ( π β β π β ( π ... π ) ( exp β π΄ ) = ( exp β Ξ£ π β ( π ... π ) π΄ ) ) |