Metamath Proof Explorer


Theorem aks4d1lem1

Description: Technical lemma to reduce proof size. (Contributed by metakunt, 14-Nov-2024)

Ref Expression
Hypotheses aks4d1lem1.1 φ N 3
aks4d1lem1.2 B = log 2 N 5
Assertion aks4d1lem1 φ B 9 < B

Proof

Step Hyp Ref Expression
1 aks4d1lem1.1 φ N 3
2 aks4d1lem1.2 B = log 2 N 5
3 2re 2
4 3 a1i φ 2
5 2pos 0 < 2
6 5 a1i φ 0 < 2
7 eluzelz N 3 N
8 1 7 syl φ N
9 8 zred φ N
10 0red φ 0
11 3re 3
12 11 a1i φ 3
13 3pos 0 < 3
14 13 a1i φ 0 < 3
15 eluzle N 3 3 N
16 1 15 syl φ 3 N
17 10 12 9 14 16 ltletrd φ 0 < N
18 1red φ 1
19 1lt2 1 < 2
20 19 a1i φ 1 < 2
21 18 20 ltned φ 1 2
22 21 necomd φ 2 1
23 4 6 9 17 22 relogbcld φ log 2 N
24 5nn0 5 0
25 24 a1i φ 5 0
26 23 25 reexpcld φ log 2 N 5
27 26 ceilcld φ log 2 N 5
28 9re 9
29 28 a1i φ 9
30 27 zred φ log 2 N 5
31 9pos 0 < 9
32 31 a1i φ 0 < 9
33 9 16 3lexlogpow5ineq4 φ 9 < log 2 N 5
34 ceilge log 2 N 5 log 2 N 5 log 2 N 5
35 26 34 syl φ log 2 N 5 log 2 N 5
36 29 26 30 33 35 ltletrd φ 9 < log 2 N 5
37 10 29 30 32 36 lttrd φ 0 < log 2 N 5
38 27 37 jca φ log 2 N 5 0 < log 2 N 5
39 elnnz log 2 N 5 log 2 N 5 0 < log 2 N 5
40 38 39 sylibr φ log 2 N 5
41 2 eleq1i B log 2 N 5
42 40 41 sylibr φ B
43 2 a1i φ B = log 2 N 5
44 36 43 breqtrrd φ 9 < B
45 42 44 jca φ B 9 < B