| Step | Hyp | Ref | Expression | 
						
							| 1 |  | arwlid.h |  |-  H = ( HomA ` C ) | 
						
							| 2 |  | arwlid.o |  |-  .x. = ( compA ` C ) | 
						
							| 3 |  | arwlid.a |  |-  .1. = ( IdA ` C ) | 
						
							| 4 |  | arwlid.f |  |-  ( ph -> F e. ( X H Y ) ) | 
						
							| 5 |  | arwass.g |  |-  ( ph -> G e. ( Y H Z ) ) | 
						
							| 6 |  | arwass.k |  |-  ( ph -> K e. ( Z H W ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 8 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 9 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 10 | 1 | homarcl |  |-  ( F e. ( X H Y ) -> C e. Cat ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> C e. Cat ) | 
						
							| 12 | 1 7 | homarcl2 |  |-  ( F e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ph -> X e. ( Base ` C ) ) | 
						
							| 15 | 13 | simprd |  |-  ( ph -> Y e. ( Base ` C ) ) | 
						
							| 16 | 1 7 | homarcl2 |  |-  ( K e. ( Z H W ) -> ( Z e. ( Base ` C ) /\ W e. ( Base ` C ) ) ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> ( Z e. ( Base ` C ) /\ W e. ( Base ` C ) ) ) | 
						
							| 18 | 17 | simpld |  |-  ( ph -> Z e. ( Base ` C ) ) | 
						
							| 19 | 1 8 | homahom |  |-  ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) | 
						
							| 20 | 4 19 | syl |  |-  ( ph -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) | 
						
							| 21 | 1 8 | homahom |  |-  ( G e. ( Y H Z ) -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) | 
						
							| 22 | 5 21 | syl |  |-  ( ph -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) | 
						
							| 23 | 17 | simprd |  |-  ( ph -> W e. ( Base ` C ) ) | 
						
							| 24 | 1 8 | homahom |  |-  ( K e. ( Z H W ) -> ( 2nd ` K ) e. ( Z ( Hom ` C ) W ) ) | 
						
							| 25 | 6 24 | syl |  |-  ( ph -> ( 2nd ` K ) e. ( Z ( Hom ` C ) W ) ) | 
						
							| 26 | 7 8 9 11 14 15 18 20 22 23 25 | catass |  |-  ( ph -> ( ( ( 2nd ` K ) ( <. Y , Z >. ( comp ` C ) W ) ( 2nd ` G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) = ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) ) ) | 
						
							| 27 | 2 1 5 6 9 | coa2 |  |-  ( ph -> ( 2nd ` ( K .x. G ) ) = ( ( 2nd ` K ) ( <. Y , Z >. ( comp ` C ) W ) ( 2nd ` G ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ph -> ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) = ( ( ( 2nd ` K ) ( <. Y , Z >. ( comp ` C ) W ) ( 2nd ` G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) ) | 
						
							| 29 | 2 1 4 5 9 | coa2 |  |-  ( ph -> ( 2nd ` ( G .x. F ) ) = ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ph -> ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) = ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) ) ) | 
						
							| 31 | 26 28 30 | 3eqtr4d |  |-  ( ph -> ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) = ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) ) | 
						
							| 32 | 31 | oteq3d |  |-  ( ph -> <. X , W , ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) >. = <. X , W , ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) >. ) | 
						
							| 33 | 2 1 5 6 | coahom |  |-  ( ph -> ( K .x. G ) e. ( Y H W ) ) | 
						
							| 34 | 2 1 4 33 9 | coaval |  |-  ( ph -> ( ( K .x. G ) .x. F ) = <. X , W , ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) >. ) | 
						
							| 35 | 2 1 4 5 | coahom |  |-  ( ph -> ( G .x. F ) e. ( X H Z ) ) | 
						
							| 36 | 2 1 35 6 9 | coaval |  |-  ( ph -> ( K .x. ( G .x. F ) ) = <. X , W , ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) >. ) | 
						
							| 37 | 32 34 36 | 3eqtr4d |  |-  ( ph -> ( ( K .x. G ) .x. F ) = ( K .x. ( G .x. F ) ) ) |