Step |
Hyp |
Ref |
Expression |
1 |
|
arwlid.h |
|- H = ( HomA ` C ) |
2 |
|
arwlid.o |
|- .x. = ( compA ` C ) |
3 |
|
arwlid.a |
|- .1. = ( IdA ` C ) |
4 |
|
arwlid.f |
|- ( ph -> F e. ( X H Y ) ) |
5 |
|
arwass.g |
|- ( ph -> G e. ( Y H Z ) ) |
6 |
|
arwass.k |
|- ( ph -> K e. ( Z H W ) ) |
7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
10 |
1
|
homarcl |
|- ( F e. ( X H Y ) -> C e. Cat ) |
11 |
4 10
|
syl |
|- ( ph -> C e. Cat ) |
12 |
1 7
|
homarcl2 |
|- ( F e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
13 |
4 12
|
syl |
|- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
14 |
13
|
simpld |
|- ( ph -> X e. ( Base ` C ) ) |
15 |
13
|
simprd |
|- ( ph -> Y e. ( Base ` C ) ) |
16 |
1 7
|
homarcl2 |
|- ( K e. ( Z H W ) -> ( Z e. ( Base ` C ) /\ W e. ( Base ` C ) ) ) |
17 |
6 16
|
syl |
|- ( ph -> ( Z e. ( Base ` C ) /\ W e. ( Base ` C ) ) ) |
18 |
17
|
simpld |
|- ( ph -> Z e. ( Base ` C ) ) |
19 |
1 8
|
homahom |
|- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
20 |
4 19
|
syl |
|- ( ph -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
21 |
1 8
|
homahom |
|- ( G e. ( Y H Z ) -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) |
22 |
5 21
|
syl |
|- ( ph -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) |
23 |
17
|
simprd |
|- ( ph -> W e. ( Base ` C ) ) |
24 |
1 8
|
homahom |
|- ( K e. ( Z H W ) -> ( 2nd ` K ) e. ( Z ( Hom ` C ) W ) ) |
25 |
6 24
|
syl |
|- ( ph -> ( 2nd ` K ) e. ( Z ( Hom ` C ) W ) ) |
26 |
7 8 9 11 14 15 18 20 22 23 25
|
catass |
|- ( ph -> ( ( ( 2nd ` K ) ( <. Y , Z >. ( comp ` C ) W ) ( 2nd ` G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) = ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) ) ) |
27 |
2 1 5 6 9
|
coa2 |
|- ( ph -> ( 2nd ` ( K .x. G ) ) = ( ( 2nd ` K ) ( <. Y , Z >. ( comp ` C ) W ) ( 2nd ` G ) ) ) |
28 |
27
|
oveq1d |
|- ( ph -> ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) = ( ( ( 2nd ` K ) ( <. Y , Z >. ( comp ` C ) W ) ( 2nd ` G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) ) |
29 |
2 1 4 5 9
|
coa2 |
|- ( ph -> ( 2nd ` ( G .x. F ) ) = ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) ) |
30 |
29
|
oveq2d |
|- ( ph -> ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) = ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) ) ) |
31 |
26 28 30
|
3eqtr4d |
|- ( ph -> ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) = ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) ) |
32 |
31
|
oteq3d |
|- ( ph -> <. X , W , ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) >. = <. X , W , ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) >. ) |
33 |
2 1 5 6
|
coahom |
|- ( ph -> ( K .x. G ) e. ( Y H W ) ) |
34 |
2 1 4 33 9
|
coaval |
|- ( ph -> ( ( K .x. G ) .x. F ) = <. X , W , ( ( 2nd ` ( K .x. G ) ) ( <. X , Y >. ( comp ` C ) W ) ( 2nd ` F ) ) >. ) |
35 |
2 1 4 5
|
coahom |
|- ( ph -> ( G .x. F ) e. ( X H Z ) ) |
36 |
2 1 35 6 9
|
coaval |
|- ( ph -> ( K .x. ( G .x. F ) ) = <. X , W , ( ( 2nd ` K ) ( <. X , Z >. ( comp ` C ) W ) ( 2nd ` ( G .x. F ) ) ) >. ) |
37 |
32 34 36
|
3eqtr4d |
|- ( ph -> ( ( K .x. G ) .x. F ) = ( K .x. ( G .x. F ) ) ) |