| Step | Hyp | Ref | Expression | 
						
							| 1 |  | arwlid.h | ⊢ 𝐻  =  ( Homa ‘ 𝐶 ) | 
						
							| 2 |  | arwlid.o | ⊢  ·   =  ( compa ‘ 𝐶 ) | 
						
							| 3 |  | arwlid.a | ⊢  1   =  ( Ida ‘ 𝐶 ) | 
						
							| 4 |  | arwlid.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 5 |  | arwass.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑌 𝐻 𝑍 ) ) | 
						
							| 6 |  | arwass.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑍 𝐻 𝑊 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 9 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 10 | 1 | homarcl | ⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  𝐶  ∈  Cat ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 12 | 1 7 | homarcl2 | ⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  ( 𝑋  ∈  ( Base ‘ 𝐶 )  ∧  𝑌  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( Base ‘ 𝐶 )  ∧  𝑌  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 15 | 13 | simprd | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 16 | 1 7 | homarcl2 | ⊢ ( 𝐾  ∈  ( 𝑍 𝐻 𝑊 )  →  ( 𝑍  ∈  ( Base ‘ 𝐶 )  ∧  𝑊  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( Base ‘ 𝐶 )  ∧  𝑊  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  𝑍  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 19 | 1 8 | homahom | ⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  ( 2nd  ‘ 𝐹 )  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) ) | 
						
							| 20 | 4 19 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ 𝐹 )  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 ) ) | 
						
							| 21 | 1 8 | homahom | ⊢ ( 𝐺  ∈  ( 𝑌 𝐻 𝑍 )  →  ( 2nd  ‘ 𝐺 )  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 22 | 5 21 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ 𝐺 )  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑍 ) ) | 
						
							| 23 | 17 | simprd | ⊢ ( 𝜑  →  𝑊  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 24 | 1 8 | homahom | ⊢ ( 𝐾  ∈  ( 𝑍 𝐻 𝑊 )  →  ( 2nd  ‘ 𝐾 )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑊 ) ) | 
						
							| 25 | 6 24 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ 𝐾 )  ∈  ( 𝑍 ( Hom  ‘ 𝐶 ) 𝑊 ) ) | 
						
							| 26 | 7 8 9 11 14 15 18 20 22 23 25 | catass | ⊢ ( 𝜑  →  ( ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑌 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐺 ) ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐹 ) )  =  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑋 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd  ‘ 𝐹 ) ) ) ) | 
						
							| 27 | 2 1 5 6 9 | coa2 | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐾  ·  𝐺 ) )  =  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑌 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐺 ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝜑  →  ( ( 2nd  ‘ ( 𝐾  ·  𝐺 ) ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐹 ) )  =  ( ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑌 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐺 ) ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐹 ) ) ) | 
						
							| 29 | 2 1 4 5 9 | coa2 | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐺  ·  𝐹 ) )  =  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd  ‘ 𝐹 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝜑  →  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑋 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ ( 𝐺  ·  𝐹 ) ) )  =  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑋 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd  ‘ 𝐹 ) ) ) ) | 
						
							| 31 | 26 28 30 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 2nd  ‘ ( 𝐾  ·  𝐺 ) ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐹 ) )  =  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑋 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ ( 𝐺  ·  𝐹 ) ) ) ) | 
						
							| 32 | 31 | oteq3d | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑊 ,  ( ( 2nd  ‘ ( 𝐾  ·  𝐺 ) ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐹 ) ) 〉  =  〈 𝑋 ,  𝑊 ,  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑋 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ ( 𝐺  ·  𝐹 ) ) ) 〉 ) | 
						
							| 33 | 2 1 5 6 | coahom | ⊢ ( 𝜑  →  ( 𝐾  ·  𝐺 )  ∈  ( 𝑌 𝐻 𝑊 ) ) | 
						
							| 34 | 2 1 4 33 9 | coaval | ⊢ ( 𝜑  →  ( ( 𝐾  ·  𝐺 )  ·  𝐹 )  =  〈 𝑋 ,  𝑊 ,  ( ( 2nd  ‘ ( 𝐾  ·  𝐺 ) ) ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ 𝐹 ) ) 〉 ) | 
						
							| 35 | 2 1 4 5 | coahom | ⊢ ( 𝜑  →  ( 𝐺  ·  𝐹 )  ∈  ( 𝑋 𝐻 𝑍 ) ) | 
						
							| 36 | 2 1 35 6 9 | coaval | ⊢ ( 𝜑  →  ( 𝐾  ·  ( 𝐺  ·  𝐹 ) )  =  〈 𝑋 ,  𝑊 ,  ( ( 2nd  ‘ 𝐾 ) ( 〈 𝑋 ,  𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd  ‘ ( 𝐺  ·  𝐹 ) ) ) 〉 ) | 
						
							| 37 | 32 34 36 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐾  ·  𝐺 )  ·  𝐹 )  =  ( 𝐾  ·  ( 𝐺  ·  𝐹 ) ) ) |