Step |
Hyp |
Ref |
Expression |
1 |
|
arwlid.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
2 |
|
arwlid.o |
⊢ · = ( compa ‘ 𝐶 ) |
3 |
|
arwlid.a |
⊢ 1 = ( Ida ‘ 𝐶 ) |
4 |
|
arwlid.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
5 |
|
arwass.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
6 |
|
arwass.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
10 |
1
|
homarcl |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
12 |
1 7
|
homarcl2 |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
15 |
13
|
simprd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
16 |
1 7
|
homarcl2 |
⊢ ( 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) → ( 𝑍 ∈ ( Base ‘ 𝐶 ) ∧ 𝑊 ∈ ( Base ‘ 𝐶 ) ) ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → ( 𝑍 ∈ ( Base ‘ 𝐶 ) ∧ 𝑊 ∈ ( Base ‘ 𝐶 ) ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
19 |
1 8
|
homahom |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 2nd ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
21 |
1 8
|
homahom |
⊢ ( 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) → ( 2nd ‘ 𝐺 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
22 |
5 21
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
23 |
17
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐶 ) ) |
24 |
1 8
|
homahom |
⊢ ( 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) → ( 2nd ‘ 𝐾 ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑊 ) ) |
25 |
6 24
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑊 ) ) |
26 |
7 8 9 11 14 15 18 20 22 23 25
|
catass |
⊢ ( 𝜑 → ( ( ( 2nd ‘ 𝐾 ) ( 〈 𝑌 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐺 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐹 ) ) = ( ( 2nd ‘ 𝐾 ) ( 〈 𝑋 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd ‘ 𝐹 ) ) ) ) |
27 |
2 1 5 6 9
|
coa2 |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐾 · 𝐺 ) ) = ( ( 2nd ‘ 𝐾 ) ( 〈 𝑌 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐺 ) ) ) |
28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 𝐾 · 𝐺 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐹 ) ) = ( ( ( 2nd ‘ 𝐾 ) ( 〈 𝑌 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐺 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐹 ) ) ) |
29 |
2 1 4 5 9
|
coa2 |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 · 𝐹 ) ) = ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd ‘ 𝐹 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) ( 〈 𝑋 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ ( 𝐺 · 𝐹 ) ) ) = ( ( 2nd ‘ 𝐾 ) ( 〈 𝑋 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd ‘ 𝐹 ) ) ) ) |
31 |
26 28 30
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 𝐾 · 𝐺 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐹 ) ) = ( ( 2nd ‘ 𝐾 ) ( 〈 𝑋 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ ( 𝐺 · 𝐹 ) ) ) ) |
32 |
31
|
oteq3d |
⊢ ( 𝜑 → 〈 𝑋 , 𝑊 , ( ( 2nd ‘ ( 𝐾 · 𝐺 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐹 ) ) 〉 = 〈 𝑋 , 𝑊 , ( ( 2nd ‘ 𝐾 ) ( 〈 𝑋 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ ( 𝐺 · 𝐹 ) ) ) 〉 ) |
33 |
2 1 5 6
|
coahom |
⊢ ( 𝜑 → ( 𝐾 · 𝐺 ) ∈ ( 𝑌 𝐻 𝑊 ) ) |
34 |
2 1 4 33 9
|
coaval |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐺 ) · 𝐹 ) = 〈 𝑋 , 𝑊 , ( ( 2nd ‘ ( 𝐾 · 𝐺 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ 𝐹 ) ) 〉 ) |
35 |
2 1 4 5
|
coahom |
⊢ ( 𝜑 → ( 𝐺 · 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |
36 |
2 1 35 6 9
|
coaval |
⊢ ( 𝜑 → ( 𝐾 · ( 𝐺 · 𝐹 ) ) = 〈 𝑋 , 𝑊 , ( ( 2nd ‘ 𝐾 ) ( 〈 𝑋 , 𝑍 〉 ( comp ‘ 𝐶 ) 𝑊 ) ( 2nd ‘ ( 𝐺 · 𝐹 ) ) ) 〉 ) |
37 |
32 34 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐾 · 𝐺 ) · 𝐹 ) = ( 𝐾 · ( 𝐺 · 𝐹 ) ) ) |