Step |
Hyp |
Ref |
Expression |
1 |
|
arwlid.h |
|- H = ( HomA ` C ) |
2 |
|
arwlid.o |
|- .x. = ( compA ` C ) |
3 |
|
arwlid.a |
|- .1. = ( IdA ` C ) |
4 |
|
arwlid.f |
|- ( ph -> F e. ( X H Y ) ) |
5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
6 |
1
|
homarcl |
|- ( F e. ( X H Y ) -> C e. Cat ) |
7 |
4 6
|
syl |
|- ( ph -> C e. Cat ) |
8 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
9 |
1 5
|
homarcl2 |
|- ( F e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
10 |
4 9
|
syl |
|- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
11 |
10
|
simpld |
|- ( ph -> X e. ( Base ` C ) ) |
12 |
3 5 7 8 11
|
ida2 |
|- ( ph -> ( 2nd ` ( .1. ` X ) ) = ( ( Id ` C ) ` X ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( ( 2nd ` F ) ( <. X , X >. ( comp ` C ) Y ) ( 2nd ` ( .1. ` X ) ) ) = ( ( 2nd ` F ) ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
14 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
15 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
16 |
10
|
simprd |
|- ( ph -> Y e. ( Base ` C ) ) |
17 |
1 14
|
homahom |
|- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
18 |
4 17
|
syl |
|- ( ph -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
19 |
5 14 8 7 11 15 16 18
|
catrid |
|- ( ph -> ( ( 2nd ` F ) ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = ( 2nd ` F ) ) |
20 |
13 19
|
eqtrd |
|- ( ph -> ( ( 2nd ` F ) ( <. X , X >. ( comp ` C ) Y ) ( 2nd ` ( .1. ` X ) ) ) = ( 2nd ` F ) ) |
21 |
20
|
oteq3d |
|- ( ph -> <. X , Y , ( ( 2nd ` F ) ( <. X , X >. ( comp ` C ) Y ) ( 2nd ` ( .1. ` X ) ) ) >. = <. X , Y , ( 2nd ` F ) >. ) |
22 |
3 5 7 11 1
|
idahom |
|- ( ph -> ( .1. ` X ) e. ( X H X ) ) |
23 |
2 1 22 4 15
|
coaval |
|- ( ph -> ( F .x. ( .1. ` X ) ) = <. X , Y , ( ( 2nd ` F ) ( <. X , X >. ( comp ` C ) Y ) ( 2nd ` ( .1. ` X ) ) ) >. ) |
24 |
1
|
homadmcd |
|- ( F e. ( X H Y ) -> F = <. X , Y , ( 2nd ` F ) >. ) |
25 |
4 24
|
syl |
|- ( ph -> F = <. X , Y , ( 2nd ` F ) >. ) |
26 |
21 23 25
|
3eqtr4d |
|- ( ph -> ( F .x. ( .1. ` X ) ) = F ) |