Step |
Hyp |
Ref |
Expression |
1 |
|
assafld.k |
|- K = ( Scalar ` A ) |
2 |
|
assafld.a |
|- ( ph -> A e. AssAlg ) |
3 |
|
assafld.1 |
|- ( ph -> A e. IDomn ) |
4 |
|
assafld.2 |
|- ( ph -> K e. DivRing ) |
5 |
|
assafld.3 |
|- ( ph -> ( dim ` A ) e. NN0 ) |
6 |
3
|
idomringd |
|- ( ph -> A e. Ring ) |
7 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
8 |
|
eqid |
|- ( Unit ` A ) = ( Unit ` A ) |
9 |
7 8
|
unitss |
|- ( Unit ` A ) C_ ( Base ` A ) |
10 |
9
|
a1i |
|- ( ph -> ( Unit ` A ) C_ ( Base ` A ) ) |
11 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
12 |
3
|
idomdomd |
|- ( ph -> A e. Domn ) |
13 |
|
domnnzr |
|- ( A e. Domn -> A e. NzRing ) |
14 |
12 13
|
syl |
|- ( ph -> A e. NzRing ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( 0g ` A ) e. ( Unit ` A ) ) -> A e. NzRing ) |
16 |
|
simpr |
|- ( ( ph /\ ( 0g ` A ) e. ( Unit ` A ) ) -> ( 0g ` A ) e. ( Unit ` A ) ) |
17 |
8 11 15 16
|
unitnz |
|- ( ( ph /\ ( 0g ` A ) e. ( Unit ` A ) ) -> ( 0g ` A ) =/= ( 0g ` A ) ) |
18 |
|
neirr |
|- -. ( 0g ` A ) =/= ( 0g ` A ) |
19 |
18
|
a1i |
|- ( ( ph /\ ( 0g ` A ) e. ( Unit ` A ) ) -> -. ( 0g ` A ) =/= ( 0g ` A ) ) |
20 |
17 19
|
pm2.65da |
|- ( ph -> -. ( 0g ` A ) e. ( Unit ` A ) ) |
21 |
|
ssdifsn |
|- ( ( Unit ` A ) C_ ( ( Base ` A ) \ { ( 0g ` A ) } ) <-> ( ( Unit ` A ) C_ ( Base ` A ) /\ -. ( 0g ` A ) e. ( Unit ` A ) ) ) |
22 |
10 20 21
|
sylanbrc |
|- ( ph -> ( Unit ` A ) C_ ( ( Base ` A ) \ { ( 0g ` A ) } ) ) |
23 |
|
eqid |
|- ( RLReg ` A ) = ( RLReg ` A ) |
24 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> A e. AssAlg ) |
25 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> K e. DivRing ) |
26 |
5
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> ( dim ` A ) e. NN0 ) |
27 |
12
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> A e. Domn ) |
28 |
|
simpr |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) |
29 |
28
|
eldifad |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> x e. ( Base ` A ) ) |
30 |
|
eldifsni |
|- ( x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) -> x =/= ( 0g ` A ) ) |
31 |
28 30
|
syl |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> x =/= ( 0g ` A ) ) |
32 |
7 23 11
|
domnrrg |
|- ( ( A e. Domn /\ x e. ( Base ` A ) /\ x =/= ( 0g ` A ) ) -> x e. ( RLReg ` A ) ) |
33 |
27 29 31 32
|
syl3anc |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> x e. ( RLReg ` A ) ) |
34 |
23 8 1 24 25 26 33
|
assarrginv |
|- ( ( ph /\ x e. ( ( Base ` A ) \ { ( 0g ` A ) } ) ) -> x e. ( Unit ` A ) ) |
35 |
22 34
|
eqelssd |
|- ( ph -> ( Unit ` A ) = ( ( Base ` A ) \ { ( 0g ` A ) } ) ) |
36 |
7 8 11
|
isdrng |
|- ( A e. DivRing <-> ( A e. Ring /\ ( Unit ` A ) = ( ( Base ` A ) \ { ( 0g ` A ) } ) ) ) |
37 |
6 35 36
|
sylanbrc |
|- ( ph -> A e. DivRing ) |
38 |
3
|
idomcringd |
|- ( ph -> A e. CRing ) |
39 |
|
isfld |
|- ( A e. Field <-> ( A e. DivRing /\ A e. CRing ) ) |
40 |
37 38 39
|
sylanbrc |
|- ( ph -> A e. Field ) |