| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assafld.k |
⊢ 𝐾 = ( Scalar ‘ 𝐴 ) |
| 2 |
|
assafld.a |
⊢ ( 𝜑 → 𝐴 ∈ AssAlg ) |
| 3 |
|
assafld.1 |
⊢ ( 𝜑 → 𝐴 ∈ IDomn ) |
| 4 |
|
assafld.2 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 5 |
|
assafld.3 |
⊢ ( 𝜑 → ( dim ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
3
|
idomringd |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 8 |
|
eqid |
⊢ ( Unit ‘ 𝐴 ) = ( Unit ‘ 𝐴 ) |
| 9 |
7 8
|
unitss |
⊢ ( Unit ‘ 𝐴 ) ⊆ ( Base ‘ 𝐴 ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝐴 ) ⊆ ( Base ‘ 𝐴 ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 12 |
3
|
idomdomd |
⊢ ( 𝜑 → 𝐴 ∈ Domn ) |
| 13 |
|
domnnzr |
⊢ ( 𝐴 ∈ Domn → 𝐴 ∈ NzRing ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ NzRing ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) → 𝐴 ∈ NzRing ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) → ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) |
| 17 |
8 11 15 16
|
unitnz |
⊢ ( ( 𝜑 ∧ ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) → ( 0g ‘ 𝐴 ) ≠ ( 0g ‘ 𝐴 ) ) |
| 18 |
|
neirr |
⊢ ¬ ( 0g ‘ 𝐴 ) ≠ ( 0g ‘ 𝐴 ) |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) → ¬ ( 0g ‘ 𝐴 ) ≠ ( 0g ‘ 𝐴 ) ) |
| 20 |
17 19
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) |
| 21 |
|
ssdifsn |
⊢ ( ( Unit ‘ 𝐴 ) ⊆ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ↔ ( ( Unit ‘ 𝐴 ) ⊆ ( Base ‘ 𝐴 ) ∧ ¬ ( 0g ‘ 𝐴 ) ∈ ( Unit ‘ 𝐴 ) ) ) |
| 22 |
10 20 21
|
sylanbrc |
⊢ ( 𝜑 → ( Unit ‘ 𝐴 ) ⊆ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) |
| 23 |
|
eqid |
⊢ ( RLReg ‘ 𝐴 ) = ( RLReg ‘ 𝐴 ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝐴 ∈ AssAlg ) |
| 25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝐾 ∈ DivRing ) |
| 26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → ( dim ‘ 𝐴 ) ∈ ℕ0 ) |
| 27 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝐴 ∈ Domn ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) |
| 29 |
28
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 30 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) → 𝑥 ≠ ( 0g ‘ 𝐴 ) ) |
| 31 |
28 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝑥 ≠ ( 0g ‘ 𝐴 ) ) |
| 32 |
7 23 11
|
domnrrg |
⊢ ( ( 𝐴 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑥 ≠ ( 0g ‘ 𝐴 ) ) → 𝑥 ∈ ( RLReg ‘ 𝐴 ) ) |
| 33 |
27 29 31 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝑥 ∈ ( RLReg ‘ 𝐴 ) ) |
| 34 |
23 8 1 24 25 26 33
|
assarrginv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) → 𝑥 ∈ ( Unit ‘ 𝐴 ) ) |
| 35 |
22 34
|
eqelssd |
⊢ ( 𝜑 → ( Unit ‘ 𝐴 ) = ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) |
| 36 |
7 8 11
|
isdrng |
⊢ ( 𝐴 ∈ DivRing ↔ ( 𝐴 ∈ Ring ∧ ( Unit ‘ 𝐴 ) = ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) ) |
| 37 |
6 35 36
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ DivRing ) |
| 38 |
3
|
idomcringd |
⊢ ( 𝜑 → 𝐴 ∈ CRing ) |
| 39 |
|
isfld |
⊢ ( 𝐴 ∈ Field ↔ ( 𝐴 ∈ DivRing ∧ 𝐴 ∈ CRing ) ) |
| 40 |
37 38 39
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ Field ) |