| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assafld.k |
|
| 2 |
|
assafld.a |
|
| 3 |
|
assafld.1 |
|
| 4 |
|
assafld.2 |
|
| 5 |
|
assafld.3 |
|
| 6 |
3
|
idomringd |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
7 8
|
unitss |
|
| 10 |
9
|
a1i |
|
| 11 |
|
eqid |
|
| 12 |
3
|
idomdomd |
|
| 13 |
|
domnnzr |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
8 11 15 16
|
unitnz |
|
| 18 |
|
neirr |
|
| 19 |
18
|
a1i |
|
| 20 |
17 19
|
pm2.65da |
|
| 21 |
|
ssdifsn |
|
| 22 |
10 20 21
|
sylanbrc |
|
| 23 |
|
eqid |
|
| 24 |
2
|
adantr |
|
| 25 |
4
|
adantr |
|
| 26 |
5
|
adantr |
|
| 27 |
12
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
28
|
eldifad |
|
| 30 |
|
eldifsni |
|
| 31 |
28 30
|
syl |
|
| 32 |
7 23 11
|
domnrrg |
|
| 33 |
27 29 31 32
|
syl3anc |
|
| 34 |
23 8 1 24 25 26 33
|
assarrginv |
|
| 35 |
22 34
|
eqelssd |
|
| 36 |
7 8 11
|
isdrng |
|
| 37 |
6 35 36
|
sylanbrc |
|
| 38 |
3
|
idomcringd |
|
| 39 |
|
isfld |
|
| 40 |
37 38 39
|
sylanbrc |
|