Metamath Proof Explorer


Theorem assarrginv

Description: If an element X of an associative algebra A over a division ring K is regular, then it is a unit. Proposition 2. in Chapter 5. of BourbakiAlg2 p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses assarrginv.1 E = RLReg A
assarrginv.2 U = Unit A
assarrginv.3 K = Scalar A
assarrginv.4 φ A AssAlg
assarrginv.5 φ K DivRing
assarrginv.6 φ dim A 0
assarrginv.7 φ X E
Assertion assarrginv φ X U

Proof

Step Hyp Ref Expression
1 assarrginv.1 E = RLReg A
2 assarrginv.2 U = Unit A
3 assarrginv.3 K = Scalar A
4 assarrginv.4 φ A AssAlg
5 assarrginv.5 φ K DivRing
6 assarrginv.6 φ dim A 0
7 assarrginv.7 φ X E
8 eqid Base A = Base A
9 eqid A = A
10 eqid a Base A X A a = a Base A X A a
11 8 9 10 4 1 3 5 6 7 assalactf1o φ a Base A X A a : Base A 1-1 onto Base A
12 eqid mulGrp A = mulGrp A
13 12 8 mgpbas Base A = Base mulGrp A
14 eqid 1 A = 1 A
15 12 14 ringidval 1 A = 0 mulGrp A
16 12 9 mgpplusg A = + mulGrp A
17 oveq2 a = b X A a = X A b
18 17 cbvmptv a Base A X A a = b Base A X A b
19 assaring A AssAlg A Ring
20 4 19 syl φ A Ring
21 12 ringmgp A Ring mulGrp A Mnd
22 20 21 syl φ mulGrp A Mnd
23 1 8 rrgss E Base A
24 23 7 sselid φ X Base A
25 13 15 16 18 22 24 mndlactf1o φ a Base A X A a : Base A 1-1 onto Base A z Base A X A z = 1 A z A X = 1 A
26 11 25 mpbid φ z Base A X A z = 1 A z A X = 1 A
27 8 2 9 14 24 20 isunit3 φ X U z Base A X A z = 1 A z A X = 1 A
28 26 27 mpbird φ X U