| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lactlmhm.b |
|
| 2 |
|
lactlmhm.m |
|
| 3 |
|
lactlmhm.f |
|
| 4 |
|
lactlmhm.a |
|
| 5 |
|
assalactf1o.1 |
|
| 6 |
|
assalactf1o.k |
|
| 7 |
|
assalactf1o.2 |
|
| 8 |
|
assalactf1o.3 |
|
| 9 |
|
assalactf1o.c |
|
| 10 |
|
assalmod |
|
| 11 |
4 10
|
syl |
|
| 12 |
6
|
islvec |
|
| 13 |
11 7 12
|
sylanbrc |
|
| 14 |
5 1
|
rrgss |
|
| 15 |
14 9
|
sselid |
|
| 16 |
1 2 3 4 15
|
lactlmhm |
|
| 17 |
|
assaring |
|
| 18 |
4 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
15
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
1 2 19 20 21
|
ringcld |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
18
|
ringgrpd |
|
| 25 |
24
|
ad3antrrr |
|
| 26 |
21
|
ad2antrr |
|
| 27 |
|
simplr |
|
| 28 |
9
|
ad3antrrr |
|
| 29 |
|
eqid |
|
| 30 |
1 29 25 26 27
|
grpsubcld |
|
| 31 |
18
|
ad3antrrr |
|
| 32 |
15
|
ad3antrrr |
|
| 33 |
1 2 29 31 32 26 27
|
ringsubdi |
|
| 34 |
22
|
ad2antrr |
|
| 35 |
1 2 31 32 27
|
ringcld |
|
| 36 |
|
simpr |
|
| 37 |
|
eqid |
|
| 38 |
1 37 29
|
grpsubeq0 |
|
| 39 |
38
|
biimpar |
|
| 40 |
25 34 35 36 39
|
syl31anc |
|
| 41 |
33 40
|
eqtrd |
|
| 42 |
5 1 2 37
|
rrgeq0i |
|
| 43 |
42
|
imp |
|
| 44 |
28 30 41 43
|
syl21anc |
|
| 45 |
1 37 29
|
grpsubeq0 |
|
| 46 |
45
|
biimpa |
|
| 47 |
25 26 27 44 46
|
syl31anc |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
anasss |
|
| 50 |
49
|
ralrimivva |
|
| 51 |
|
oveq2 |
|
| 52 |
3 51
|
f1mpt |
|
| 53 |
23 50 52
|
sylanbrc |
|
| 54 |
1 13 8 16 53
|
lvecendof1f1o |
|