Step |
Hyp |
Ref |
Expression |
1 |
|
lactlmhm.b |
|
2 |
|
lactlmhm.m |
|
3 |
|
lactlmhm.f |
|
4 |
|
lactlmhm.a |
|
5 |
|
assalactf1o.1 |
|
6 |
|
assalactf1o.k |
|
7 |
|
assalactf1o.2 |
|
8 |
|
assalactf1o.3 |
|
9 |
|
assalactf1o.c |
|
10 |
|
assalmod |
|
11 |
4 10
|
syl |
|
12 |
6
|
islvec |
|
13 |
11 7 12
|
sylanbrc |
|
14 |
5 1
|
rrgss |
|
15 |
14 9
|
sselid |
|
16 |
1 2 3 4 15
|
lactlmhm |
|
17 |
|
assaring |
|
18 |
4 17
|
syl |
|
19 |
18
|
adantr |
|
20 |
15
|
adantr |
|
21 |
|
simpr |
|
22 |
1 2 19 20 21
|
ringcld |
|
23 |
22
|
ralrimiva |
|
24 |
18
|
ringgrpd |
|
25 |
24
|
ad3antrrr |
|
26 |
21
|
ad2antrr |
|
27 |
|
simplr |
|
28 |
9
|
ad3antrrr |
|
29 |
|
eqid |
|
30 |
1 29 25 26 27
|
grpsubcld |
|
31 |
18
|
ad3antrrr |
|
32 |
15
|
ad3antrrr |
|
33 |
1 2 29 31 32 26 27
|
ringsubdi |
|
34 |
22
|
ad2antrr |
|
35 |
1 2 31 32 27
|
ringcld |
|
36 |
|
simpr |
|
37 |
|
eqid |
|
38 |
1 37 29
|
grpsubeq0 |
|
39 |
38
|
biimpar |
|
40 |
25 34 35 36 39
|
syl31anc |
|
41 |
33 40
|
eqtrd |
|
42 |
5 1 2 37
|
rrgeq0i |
|
43 |
42
|
imp |
|
44 |
28 30 41 43
|
syl21anc |
|
45 |
1 37 29
|
grpsubeq0 |
|
46 |
45
|
biimpa |
|
47 |
25 26 27 44 46
|
syl31anc |
|
48 |
47
|
ex |
|
49 |
48
|
anasss |
|
50 |
49
|
ralrimivva |
|
51 |
|
oveq2 |
|
52 |
3 51
|
f1mpt |
|
53 |
23 50 52
|
sylanbrc |
|
54 |
1 13 8 16 53
|
lvecendof1f1o |
|