Metamath Proof Explorer


Theorem lvecendof1f1o

Description: If an endomorphism U of a vector space E of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in BourbakiAlg1 p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses lvecendof1f1o.b B = Base E
lvecendof1f1o.e φ E LVec
lvecendof1f1o.d φ dim E 0
lvecendof1f1o.u φ U E LMHom E
lvecendof1f1o.1 φ U : B 1-1 B
Assertion lvecendof1f1o φ U : B 1-1 onto B

Proof

Step Hyp Ref Expression
1 lvecendof1f1o.b B = Base E
2 lvecendof1f1o.e φ E LVec
3 lvecendof1f1o.d φ dim E 0
4 lvecendof1f1o.u φ U E LMHom E
5 lvecendof1f1o.1 φ U : B 1-1 B
6 1 1 lmhmf U E LMHom E U : B B
7 4 6 syl φ U : B B
8 7 ffnd φ U Fn B
9 lmhmrnlss U E LMHom E ran U LSubSp E
10 4 9 syl φ ran U LSubSp E
11 eqid 0 E = 0 E
12 eqid E 𝑠 U -1 0 E = E 𝑠 U -1 0 E
13 eqid E 𝑠 ran U = E 𝑠 ran U
14 11 12 13 dimkerim E LVec U E LMHom E dim E = dim E 𝑠 U -1 0 E + 𝑒 dim E 𝑠 ran U
15 2 4 14 syl2anc φ dim E = dim E 𝑠 U -1 0 E + 𝑒 dim E 𝑠 ran U
16 eqid U -1 0 E = U -1 0 E
17 eqid LSubSp E = LSubSp E
18 16 11 17 lmhmkerlss U E LMHom E U -1 0 E LSubSp E
19 4 18 syl φ U -1 0 E LSubSp E
20 12 17 lsslvec E LVec U -1 0 E LSubSp E E 𝑠 U -1 0 E LVec
21 2 19 20 syl2anc φ E 𝑠 U -1 0 E LVec
22 4 lmhmghmd φ U E GrpHom E
23 1 1 11 11 kerf1ghm U E GrpHom E U : B 1-1 B U -1 0 E = 0 E
24 23 biimpa U E GrpHom E U : B 1-1 B U -1 0 E = 0 E
25 22 5 24 syl2anc φ U -1 0 E = 0 E
26 cnvimass U -1 0 E dom U
27 26 7 fssdm φ U -1 0 E B
28 12 1 ressbas2 U -1 0 E B U -1 0 E = Base E 𝑠 U -1 0 E
29 27 28 syl φ U -1 0 E = Base E 𝑠 U -1 0 E
30 2 lvecgrpd φ E Grp
31 30 grpmndd φ E Mnd
32 1 11 mndidcl E Mnd 0 E B
33 31 32 syl φ 0 E B
34 11 11 ghmid U E GrpHom E U 0 E = 0 E
35 22 34 syl φ U 0 E = 0 E
36 fvex 0 E V
37 36 snid 0 E 0 E
38 35 37 eqeltrdi φ U 0 E 0 E
39 8 33 38 elpreimad φ 0 E U -1 0 E
40 12 1 11 ress0g E Mnd 0 E U -1 0 E U -1 0 E B 0 E = 0 E 𝑠 U -1 0 E
41 31 39 27 40 syl3anc φ 0 E = 0 E 𝑠 U -1 0 E
42 41 sneqd φ 0 E = 0 E 𝑠 U -1 0 E
43 25 29 42 3eqtr3d φ Base E 𝑠 U -1 0 E = 0 E 𝑠 U -1 0 E
44 eqid 0 E 𝑠 U -1 0 E = 0 E 𝑠 U -1 0 E
45 44 lvecdim0 E 𝑠 U -1 0 E LVec dim E 𝑠 U -1 0 E = 0 Base E 𝑠 U -1 0 E = 0 E 𝑠 U -1 0 E
46 45 biimpar E 𝑠 U -1 0 E LVec Base E 𝑠 U -1 0 E = 0 E 𝑠 U -1 0 E dim E 𝑠 U -1 0 E = 0
47 21 43 46 syl2anc φ dim E 𝑠 U -1 0 E = 0
48 47 oveq1d φ dim E 𝑠 U -1 0 E + 𝑒 dim E 𝑠 ran U = 0 + 𝑒 dim E 𝑠 ran U
49 13 17 lsslvec E LVec ran U LSubSp E E 𝑠 ran U LVec
50 2 10 49 syl2anc φ E 𝑠 ran U LVec
51 dimcl E 𝑠 ran U LVec dim E 𝑠 ran U 0 *
52 xnn0xr dim E 𝑠 ran U 0 * dim E 𝑠 ran U *
53 xaddlid dim E 𝑠 ran U * 0 + 𝑒 dim E 𝑠 ran U = dim E 𝑠 ran U
54 50 51 52 53 4syl φ 0 + 𝑒 dim E 𝑠 ran U = dim E 𝑠 ran U
55 15 48 54 3eqtrrd φ dim E 𝑠 ran U = dim E
56 1 2 3 10 55 dimlssid φ ran U = B
57 df-fo U : B onto B U Fn B ran U = B
58 8 56 57 sylanbrc φ U : B onto B
59 df-f1o U : B 1-1 onto B U : B 1-1 B U : B onto B
60 5 58 59 sylanbrc φ U : B 1-1 onto B