Metamath Proof Explorer


Theorem dimlssid

Description: If the dimension of a linear subspace L is the dimension of the whole vector space E , then L is the whole space. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses dimlssid.b B = Base E
dimlssid.e φ E LVec
dimlssid.1 φ dim E 0
dimlssid.l φ L LSubSp E
dimlssid.2 φ dim E 𝑠 L = dim E
Assertion dimlssid φ L = B

Proof

Step Hyp Ref Expression
1 dimlssid.b B = Base E
2 dimlssid.e φ E LVec
3 dimlssid.1 φ dim E 0
4 dimlssid.l φ L LSubSp E
5 dimlssid.2 φ dim E 𝑠 L = dim E
6 eqid E 𝑠 L = E 𝑠 L
7 eqid LSubSp E = LSubSp E
8 6 7 lsslvec E LVec L LSubSp E E 𝑠 L LVec
9 2 4 8 syl2anc φ E 𝑠 L LVec
10 eqid LBasis E 𝑠 L = LBasis E 𝑠 L
11 10 lbsex E 𝑠 L LVec LBasis E 𝑠 L
12 9 11 syl φ LBasis E 𝑠 L
13 simplr φ t LBasis E 𝑠 L s LBasis E t s s LBasis E
14 eqid LBasis E = LBasis E
15 14 dimval E LVec s LBasis E dim E = s
16 2 15 sylan φ s LBasis E dim E = s
17 16 ad4ant13 φ t LBasis E 𝑠 L s LBasis E t s dim E = s
18 3 ad3antrrr φ t LBasis E 𝑠 L s LBasis E t s dim E 0
19 17 18 eqeltrrd φ t LBasis E 𝑠 L s LBasis E t s s 0
20 hashclb s LBasis E s Fin s 0
21 20 biimpar s LBasis E s 0 s Fin
22 13 19 21 syl2anc φ t LBasis E 𝑠 L s LBasis E t s s Fin
23 simpr φ t LBasis E 𝑠 L s LBasis E t s t s
24 5 ad3antrrr φ t LBasis E 𝑠 L s LBasis E t s dim E 𝑠 L = dim E
25 9 ad3antrrr φ t LBasis E 𝑠 L s LBasis E t s E 𝑠 L LVec
26 simpllr φ t LBasis E 𝑠 L s LBasis E t s t LBasis E 𝑠 L
27 10 dimval E 𝑠 L LVec t LBasis E 𝑠 L dim E 𝑠 L = t
28 25 26 27 syl2anc φ t LBasis E 𝑠 L s LBasis E t s dim E 𝑠 L = t
29 24 28 17 3eqtr3d φ t LBasis E 𝑠 L s LBasis E t s t = s
30 22 23 29 phphashrd φ t LBasis E 𝑠 L s LBasis E t s t = s
31 30 fveq2d φ t LBasis E 𝑠 L s LBasis E t s LSpan E t = LSpan E s
32 1 7 lssss L LSubSp E L B
33 6 1 ressbas2 L B L = Base E 𝑠 L
34 4 32 33 3syl φ L = Base E 𝑠 L
35 34 ad3antrrr φ t LBasis E 𝑠 L s LBasis E t s L = Base E 𝑠 L
36 eqid Base E 𝑠 L = Base E 𝑠 L
37 eqid LSpan E 𝑠 L = LSpan E 𝑠 L
38 36 10 37 lbssp t LBasis E 𝑠 L LSpan E 𝑠 L t = Base E 𝑠 L
39 26 38 syl φ t LBasis E 𝑠 L s LBasis E t s LSpan E 𝑠 L t = Base E 𝑠 L
40 2 lveclmodd φ E LMod
41 40 ad3antrrr φ t LBasis E 𝑠 L s LBasis E t s E LMod
42 4 ad3antrrr φ t LBasis E 𝑠 L s LBasis E t s L LSubSp E
43 36 10 lbsss t LBasis E 𝑠 L t Base E 𝑠 L
44 26 43 syl φ t LBasis E 𝑠 L s LBasis E t s t Base E 𝑠 L
45 44 35 sseqtrrd φ t LBasis E 𝑠 L s LBasis E t s t L
46 eqid LSpan E = LSpan E
47 6 46 37 7 lsslsp E LMod L LSubSp E t L LSpan E 𝑠 L t = LSpan E t
48 41 42 45 47 syl3anc φ t LBasis E 𝑠 L s LBasis E t s LSpan E 𝑠 L t = LSpan E t
49 35 39 48 3eqtr2rd φ t LBasis E 𝑠 L s LBasis E t s LSpan E t = L
50 1 14 46 lbssp s LBasis E LSpan E s = B
51 13 50 syl φ t LBasis E 𝑠 L s LBasis E t s LSpan E s = B
52 31 49 51 3eqtr3d φ t LBasis E 𝑠 L s LBasis E t s L = B
53 2 adantr φ t LBasis E 𝑠 L E LVec
54 43 adantl φ t LBasis E 𝑠 L t Base E 𝑠 L
55 34 adantr φ t LBasis E 𝑠 L L = Base E 𝑠 L
56 54 55 sseqtrrd φ t LBasis E 𝑠 L t L
57 4 32 syl φ L B
58 57 adantr φ t LBasis E 𝑠 L L B
59 56 58 sstrd φ t LBasis E 𝑠 L t B
60 9 lveclmodd φ E 𝑠 L LMod
61 60 ad2antrr φ t LBasis E 𝑠 L u t E 𝑠 L LMod
62 eqid Scalar E = Scalar E
63 62 lvecdrng E LVec Scalar E DivRing
64 drngnzr Scalar E DivRing Scalar E NzRing
65 2 63 64 3syl φ Scalar E NzRing
66 eqid 1 Scalar E = 1 Scalar E
67 eqid 0 Scalar E = 0 Scalar E
68 66 67 nzrnz Scalar E NzRing 1 Scalar E 0 Scalar E
69 65 68 syl φ 1 Scalar E 0 Scalar E
70 6 62 resssca L LSubSp E Scalar E = Scalar E 𝑠 L
71 4 70 syl φ Scalar E = Scalar E 𝑠 L
72 71 fveq2d φ 1 Scalar E = 1 Scalar E 𝑠 L
73 71 fveq2d φ 0 Scalar E = 0 Scalar E 𝑠 L
74 69 72 73 3netr3d φ 1 Scalar E 𝑠 L 0 Scalar E 𝑠 L
75 74 ad2antrr φ t LBasis E 𝑠 L u t 1 Scalar E 𝑠 L 0 Scalar E 𝑠 L
76 simplr φ t LBasis E 𝑠 L u t t LBasis E 𝑠 L
77 simpr φ t LBasis E 𝑠 L u t u t
78 eqid Scalar E 𝑠 L = Scalar E 𝑠 L
79 eqid 1 Scalar E 𝑠 L = 1 Scalar E 𝑠 L
80 eqid 0 Scalar E 𝑠 L = 0 Scalar E 𝑠 L
81 10 37 78 79 80 lbsind2 E 𝑠 L LMod 1 Scalar E 𝑠 L 0 Scalar E 𝑠 L t LBasis E 𝑠 L u t ¬ u LSpan E 𝑠 L t u
82 61 75 76 77 81 syl211anc φ t LBasis E 𝑠 L u t ¬ u LSpan E 𝑠 L t u
83 40 ad2antrr φ t LBasis E 𝑠 L u t E LMod
84 4 ad2antrr φ t LBasis E 𝑠 L u t L LSubSp E
85 56 adantr φ t LBasis E 𝑠 L u t t L
86 85 ssdifssd φ t LBasis E 𝑠 L u t t u L
87 6 46 37 7 lsslsp E LMod L LSubSp E t u L LSpan E 𝑠 L t u = LSpan E t u
88 83 84 86 87 syl3anc φ t LBasis E 𝑠 L u t LSpan E 𝑠 L t u = LSpan E t u
89 82 88 neleqtrd φ t LBasis E 𝑠 L u t ¬ u LSpan E t u
90 89 ralrimiva φ t LBasis E 𝑠 L u t ¬ u LSpan E t u
91 14 1 46 lbsext E LVec t B u t ¬ u LSpan E t u s LBasis E t s
92 53 59 90 91 syl3anc φ t LBasis E 𝑠 L s LBasis E t s
93 52 92 r19.29a φ t LBasis E 𝑠 L L = B
94 12 93 n0limd φ L = B