Step |
Hyp |
Ref |
Expression |
1 |
|
dimlssid.b |
|- B = ( Base ` E ) |
2 |
|
dimlssid.e |
|- ( ph -> E e. LVec ) |
3 |
|
dimlssid.1 |
|- ( ph -> ( dim ` E ) e. NN0 ) |
4 |
|
dimlssid.l |
|- ( ph -> L e. ( LSubSp ` E ) ) |
5 |
|
dimlssid.2 |
|- ( ph -> ( dim ` ( E |`s L ) ) = ( dim ` E ) ) |
6 |
|
eqid |
|- ( E |`s L ) = ( E |`s L ) |
7 |
|
eqid |
|- ( LSubSp ` E ) = ( LSubSp ` E ) |
8 |
6 7
|
lsslvec |
|- ( ( E e. LVec /\ L e. ( LSubSp ` E ) ) -> ( E |`s L ) e. LVec ) |
9 |
2 4 8
|
syl2anc |
|- ( ph -> ( E |`s L ) e. LVec ) |
10 |
|
eqid |
|- ( LBasis ` ( E |`s L ) ) = ( LBasis ` ( E |`s L ) ) |
11 |
10
|
lbsex |
|- ( ( E |`s L ) e. LVec -> ( LBasis ` ( E |`s L ) ) =/= (/) ) |
12 |
9 11
|
syl |
|- ( ph -> ( LBasis ` ( E |`s L ) ) =/= (/) ) |
13 |
|
simplr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> s e. ( LBasis ` E ) ) |
14 |
|
eqid |
|- ( LBasis ` E ) = ( LBasis ` E ) |
15 |
14
|
dimval |
|- ( ( E e. LVec /\ s e. ( LBasis ` E ) ) -> ( dim ` E ) = ( # ` s ) ) |
16 |
2 15
|
sylan |
|- ( ( ph /\ s e. ( LBasis ` E ) ) -> ( dim ` E ) = ( # ` s ) ) |
17 |
16
|
ad4ant13 |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( dim ` E ) = ( # ` s ) ) |
18 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( dim ` E ) e. NN0 ) |
19 |
17 18
|
eqeltrrd |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( # ` s ) e. NN0 ) |
20 |
|
hashclb |
|- ( s e. ( LBasis ` E ) -> ( s e. Fin <-> ( # ` s ) e. NN0 ) ) |
21 |
20
|
biimpar |
|- ( ( s e. ( LBasis ` E ) /\ ( # ` s ) e. NN0 ) -> s e. Fin ) |
22 |
13 19 21
|
syl2anc |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> s e. Fin ) |
23 |
|
simpr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> t C_ s ) |
24 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( dim ` ( E |`s L ) ) = ( dim ` E ) ) |
25 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( E |`s L ) e. LVec ) |
26 |
|
simpllr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> t e. ( LBasis ` ( E |`s L ) ) ) |
27 |
10
|
dimval |
|- ( ( ( E |`s L ) e. LVec /\ t e. ( LBasis ` ( E |`s L ) ) ) -> ( dim ` ( E |`s L ) ) = ( # ` t ) ) |
28 |
25 26 27
|
syl2anc |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( dim ` ( E |`s L ) ) = ( # ` t ) ) |
29 |
24 28 17
|
3eqtr3d |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( # ` t ) = ( # ` s ) ) |
30 |
22 23 29
|
phphashrd |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> t = s ) |
31 |
30
|
fveq2d |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( ( LSpan ` E ) ` t ) = ( ( LSpan ` E ) ` s ) ) |
32 |
1 7
|
lssss |
|- ( L e. ( LSubSp ` E ) -> L C_ B ) |
33 |
6 1
|
ressbas2 |
|- ( L C_ B -> L = ( Base ` ( E |`s L ) ) ) |
34 |
4 32 33
|
3syl |
|- ( ph -> L = ( Base ` ( E |`s L ) ) ) |
35 |
34
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> L = ( Base ` ( E |`s L ) ) ) |
36 |
|
eqid |
|- ( Base ` ( E |`s L ) ) = ( Base ` ( E |`s L ) ) |
37 |
|
eqid |
|- ( LSpan ` ( E |`s L ) ) = ( LSpan ` ( E |`s L ) ) |
38 |
36 10 37
|
lbssp |
|- ( t e. ( LBasis ` ( E |`s L ) ) -> ( ( LSpan ` ( E |`s L ) ) ` t ) = ( Base ` ( E |`s L ) ) ) |
39 |
26 38
|
syl |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( ( LSpan ` ( E |`s L ) ) ` t ) = ( Base ` ( E |`s L ) ) ) |
40 |
2
|
lveclmodd |
|- ( ph -> E e. LMod ) |
41 |
40
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> E e. LMod ) |
42 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> L e. ( LSubSp ` E ) ) |
43 |
36 10
|
lbsss |
|- ( t e. ( LBasis ` ( E |`s L ) ) -> t C_ ( Base ` ( E |`s L ) ) ) |
44 |
26 43
|
syl |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> t C_ ( Base ` ( E |`s L ) ) ) |
45 |
44 35
|
sseqtrrd |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> t C_ L ) |
46 |
|
eqid |
|- ( LSpan ` E ) = ( LSpan ` E ) |
47 |
6 46 37 7
|
lsslsp |
|- ( ( E e. LMod /\ L e. ( LSubSp ` E ) /\ t C_ L ) -> ( ( LSpan ` ( E |`s L ) ) ` t ) = ( ( LSpan ` E ) ` t ) ) |
48 |
41 42 45 47
|
syl3anc |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( ( LSpan ` ( E |`s L ) ) ` t ) = ( ( LSpan ` E ) ` t ) ) |
49 |
35 39 48
|
3eqtr2rd |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( ( LSpan ` E ) ` t ) = L ) |
50 |
1 14 46
|
lbssp |
|- ( s e. ( LBasis ` E ) -> ( ( LSpan ` E ) ` s ) = B ) |
51 |
13 50
|
syl |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> ( ( LSpan ` E ) ` s ) = B ) |
52 |
31 49 51
|
3eqtr3d |
|- ( ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ s e. ( LBasis ` E ) ) /\ t C_ s ) -> L = B ) |
53 |
2
|
adantr |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> E e. LVec ) |
54 |
43
|
adantl |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> t C_ ( Base ` ( E |`s L ) ) ) |
55 |
34
|
adantr |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> L = ( Base ` ( E |`s L ) ) ) |
56 |
54 55
|
sseqtrrd |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> t C_ L ) |
57 |
4 32
|
syl |
|- ( ph -> L C_ B ) |
58 |
57
|
adantr |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> L C_ B ) |
59 |
56 58
|
sstrd |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> t C_ B ) |
60 |
9
|
lveclmodd |
|- ( ph -> ( E |`s L ) e. LMod ) |
61 |
60
|
ad2antrr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> ( E |`s L ) e. LMod ) |
62 |
|
eqid |
|- ( Scalar ` E ) = ( Scalar ` E ) |
63 |
62
|
lvecdrng |
|- ( E e. LVec -> ( Scalar ` E ) e. DivRing ) |
64 |
|
drngnzr |
|- ( ( Scalar ` E ) e. DivRing -> ( Scalar ` E ) e. NzRing ) |
65 |
2 63 64
|
3syl |
|- ( ph -> ( Scalar ` E ) e. NzRing ) |
66 |
|
eqid |
|- ( 1r ` ( Scalar ` E ) ) = ( 1r ` ( Scalar ` E ) ) |
67 |
|
eqid |
|- ( 0g ` ( Scalar ` E ) ) = ( 0g ` ( Scalar ` E ) ) |
68 |
66 67
|
nzrnz |
|- ( ( Scalar ` E ) e. NzRing -> ( 1r ` ( Scalar ` E ) ) =/= ( 0g ` ( Scalar ` E ) ) ) |
69 |
65 68
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` E ) ) =/= ( 0g ` ( Scalar ` E ) ) ) |
70 |
6 62
|
resssca |
|- ( L e. ( LSubSp ` E ) -> ( Scalar ` E ) = ( Scalar ` ( E |`s L ) ) ) |
71 |
4 70
|
syl |
|- ( ph -> ( Scalar ` E ) = ( Scalar ` ( E |`s L ) ) ) |
72 |
71
|
fveq2d |
|- ( ph -> ( 1r ` ( Scalar ` E ) ) = ( 1r ` ( Scalar ` ( E |`s L ) ) ) ) |
73 |
71
|
fveq2d |
|- ( ph -> ( 0g ` ( Scalar ` E ) ) = ( 0g ` ( Scalar ` ( E |`s L ) ) ) ) |
74 |
69 72 73
|
3netr3d |
|- ( ph -> ( 1r ` ( Scalar ` ( E |`s L ) ) ) =/= ( 0g ` ( Scalar ` ( E |`s L ) ) ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> ( 1r ` ( Scalar ` ( E |`s L ) ) ) =/= ( 0g ` ( Scalar ` ( E |`s L ) ) ) ) |
76 |
|
simplr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> t e. ( LBasis ` ( E |`s L ) ) ) |
77 |
|
simpr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> u e. t ) |
78 |
|
eqid |
|- ( Scalar ` ( E |`s L ) ) = ( Scalar ` ( E |`s L ) ) |
79 |
|
eqid |
|- ( 1r ` ( Scalar ` ( E |`s L ) ) ) = ( 1r ` ( Scalar ` ( E |`s L ) ) ) |
80 |
|
eqid |
|- ( 0g ` ( Scalar ` ( E |`s L ) ) ) = ( 0g ` ( Scalar ` ( E |`s L ) ) ) |
81 |
10 37 78 79 80
|
lbsind2 |
|- ( ( ( ( E |`s L ) e. LMod /\ ( 1r ` ( Scalar ` ( E |`s L ) ) ) =/= ( 0g ` ( Scalar ` ( E |`s L ) ) ) ) /\ t e. ( LBasis ` ( E |`s L ) ) /\ u e. t ) -> -. u e. ( ( LSpan ` ( E |`s L ) ) ` ( t \ { u } ) ) ) |
82 |
61 75 76 77 81
|
syl211anc |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> -. u e. ( ( LSpan ` ( E |`s L ) ) ` ( t \ { u } ) ) ) |
83 |
40
|
ad2antrr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> E e. LMod ) |
84 |
4
|
ad2antrr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> L e. ( LSubSp ` E ) ) |
85 |
56
|
adantr |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> t C_ L ) |
86 |
85
|
ssdifssd |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> ( t \ { u } ) C_ L ) |
87 |
6 46 37 7
|
lsslsp |
|- ( ( E e. LMod /\ L e. ( LSubSp ` E ) /\ ( t \ { u } ) C_ L ) -> ( ( LSpan ` ( E |`s L ) ) ` ( t \ { u } ) ) = ( ( LSpan ` E ) ` ( t \ { u } ) ) ) |
88 |
83 84 86 87
|
syl3anc |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> ( ( LSpan ` ( E |`s L ) ) ` ( t \ { u } ) ) = ( ( LSpan ` E ) ` ( t \ { u } ) ) ) |
89 |
82 88
|
neleqtrd |
|- ( ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) /\ u e. t ) -> -. u e. ( ( LSpan ` E ) ` ( t \ { u } ) ) ) |
90 |
89
|
ralrimiva |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> A. u e. t -. u e. ( ( LSpan ` E ) ` ( t \ { u } ) ) ) |
91 |
14 1 46
|
lbsext |
|- ( ( E e. LVec /\ t C_ B /\ A. u e. t -. u e. ( ( LSpan ` E ) ` ( t \ { u } ) ) ) -> E. s e. ( LBasis ` E ) t C_ s ) |
92 |
53 59 90 91
|
syl3anc |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> E. s e. ( LBasis ` E ) t C_ s ) |
93 |
52 92
|
r19.29a |
|- ( ( ph /\ t e. ( LBasis ` ( E |`s L ) ) ) -> L = B ) |
94 |
12 93
|
n0limd |
|- ( ph -> L = B ) |