Step |
Hyp |
Ref |
Expression |
1 |
|
lvecendof1f1o.b |
|- B = ( Base ` E ) |
2 |
|
lvecendof1f1o.e |
|- ( ph -> E e. LVec ) |
3 |
|
lvecendof1f1o.d |
|- ( ph -> ( dim ` E ) e. NN0 ) |
4 |
|
lvecendof1f1o.u |
|- ( ph -> U e. ( E LMHom E ) ) |
5 |
|
lvecendof1f1o.1 |
|- ( ph -> U : B -1-1-> B ) |
6 |
1 1
|
lmhmf |
|- ( U e. ( E LMHom E ) -> U : B --> B ) |
7 |
4 6
|
syl |
|- ( ph -> U : B --> B ) |
8 |
7
|
ffnd |
|- ( ph -> U Fn B ) |
9 |
|
lmhmrnlss |
|- ( U e. ( E LMHom E ) -> ran U e. ( LSubSp ` E ) ) |
10 |
4 9
|
syl |
|- ( ph -> ran U e. ( LSubSp ` E ) ) |
11 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
12 |
|
eqid |
|- ( E |`s ( `' U " { ( 0g ` E ) } ) ) = ( E |`s ( `' U " { ( 0g ` E ) } ) ) |
13 |
|
eqid |
|- ( E |`s ran U ) = ( E |`s ran U ) |
14 |
11 12 13
|
dimkerim |
|- ( ( E e. LVec /\ U e. ( E LMHom E ) ) -> ( dim ` E ) = ( ( dim ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) +e ( dim ` ( E |`s ran U ) ) ) ) |
15 |
2 4 14
|
syl2anc |
|- ( ph -> ( dim ` E ) = ( ( dim ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) +e ( dim ` ( E |`s ran U ) ) ) ) |
16 |
|
eqid |
|- ( `' U " { ( 0g ` E ) } ) = ( `' U " { ( 0g ` E ) } ) |
17 |
|
eqid |
|- ( LSubSp ` E ) = ( LSubSp ` E ) |
18 |
16 11 17
|
lmhmkerlss |
|- ( U e. ( E LMHom E ) -> ( `' U " { ( 0g ` E ) } ) e. ( LSubSp ` E ) ) |
19 |
4 18
|
syl |
|- ( ph -> ( `' U " { ( 0g ` E ) } ) e. ( LSubSp ` E ) ) |
20 |
12 17
|
lsslvec |
|- ( ( E e. LVec /\ ( `' U " { ( 0g ` E ) } ) e. ( LSubSp ` E ) ) -> ( E |`s ( `' U " { ( 0g ` E ) } ) ) e. LVec ) |
21 |
2 19 20
|
syl2anc |
|- ( ph -> ( E |`s ( `' U " { ( 0g ` E ) } ) ) e. LVec ) |
22 |
4
|
lmhmghmd |
|- ( ph -> U e. ( E GrpHom E ) ) |
23 |
1 1 11 11
|
kerf1ghm |
|- ( U e. ( E GrpHom E ) -> ( U : B -1-1-> B <-> ( `' U " { ( 0g ` E ) } ) = { ( 0g ` E ) } ) ) |
24 |
23
|
biimpa |
|- ( ( U e. ( E GrpHom E ) /\ U : B -1-1-> B ) -> ( `' U " { ( 0g ` E ) } ) = { ( 0g ` E ) } ) |
25 |
22 5 24
|
syl2anc |
|- ( ph -> ( `' U " { ( 0g ` E ) } ) = { ( 0g ` E ) } ) |
26 |
|
cnvimass |
|- ( `' U " { ( 0g ` E ) } ) C_ dom U |
27 |
26 7
|
fssdm |
|- ( ph -> ( `' U " { ( 0g ` E ) } ) C_ B ) |
28 |
12 1
|
ressbas2 |
|- ( ( `' U " { ( 0g ` E ) } ) C_ B -> ( `' U " { ( 0g ` E ) } ) = ( Base ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( `' U " { ( 0g ` E ) } ) = ( Base ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) ) |
30 |
2
|
lvecgrpd |
|- ( ph -> E e. Grp ) |
31 |
30
|
grpmndd |
|- ( ph -> E e. Mnd ) |
32 |
1 11
|
mndidcl |
|- ( E e. Mnd -> ( 0g ` E ) e. B ) |
33 |
31 32
|
syl |
|- ( ph -> ( 0g ` E ) e. B ) |
34 |
11 11
|
ghmid |
|- ( U e. ( E GrpHom E ) -> ( U ` ( 0g ` E ) ) = ( 0g ` E ) ) |
35 |
22 34
|
syl |
|- ( ph -> ( U ` ( 0g ` E ) ) = ( 0g ` E ) ) |
36 |
|
fvex |
|- ( 0g ` E ) e. _V |
37 |
36
|
snid |
|- ( 0g ` E ) e. { ( 0g ` E ) } |
38 |
35 37
|
eqeltrdi |
|- ( ph -> ( U ` ( 0g ` E ) ) e. { ( 0g ` E ) } ) |
39 |
8 33 38
|
elpreimad |
|- ( ph -> ( 0g ` E ) e. ( `' U " { ( 0g ` E ) } ) ) |
40 |
12 1 11
|
ress0g |
|- ( ( E e. Mnd /\ ( 0g ` E ) e. ( `' U " { ( 0g ` E ) } ) /\ ( `' U " { ( 0g ` E ) } ) C_ B ) -> ( 0g ` E ) = ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) ) |
41 |
31 39 27 40
|
syl3anc |
|- ( ph -> ( 0g ` E ) = ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) ) |
42 |
41
|
sneqd |
|- ( ph -> { ( 0g ` E ) } = { ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) } ) |
43 |
25 29 42
|
3eqtr3d |
|- ( ph -> ( Base ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = { ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) } ) |
44 |
|
eqid |
|- ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) |
45 |
44
|
lvecdim0 |
|- ( ( E |`s ( `' U " { ( 0g ` E ) } ) ) e. LVec -> ( ( dim ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = 0 <-> ( Base ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = { ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) } ) ) |
46 |
45
|
biimpar |
|- ( ( ( E |`s ( `' U " { ( 0g ` E ) } ) ) e. LVec /\ ( Base ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = { ( 0g ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) } ) -> ( dim ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = 0 ) |
47 |
21 43 46
|
syl2anc |
|- ( ph -> ( dim ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) = 0 ) |
48 |
47
|
oveq1d |
|- ( ph -> ( ( dim ` ( E |`s ( `' U " { ( 0g ` E ) } ) ) ) +e ( dim ` ( E |`s ran U ) ) ) = ( 0 +e ( dim ` ( E |`s ran U ) ) ) ) |
49 |
13 17
|
lsslvec |
|- ( ( E e. LVec /\ ran U e. ( LSubSp ` E ) ) -> ( E |`s ran U ) e. LVec ) |
50 |
2 10 49
|
syl2anc |
|- ( ph -> ( E |`s ran U ) e. LVec ) |
51 |
|
dimcl |
|- ( ( E |`s ran U ) e. LVec -> ( dim ` ( E |`s ran U ) ) e. NN0* ) |
52 |
|
xnn0xr |
|- ( ( dim ` ( E |`s ran U ) ) e. NN0* -> ( dim ` ( E |`s ran U ) ) e. RR* ) |
53 |
|
xaddlid |
|- ( ( dim ` ( E |`s ran U ) ) e. RR* -> ( 0 +e ( dim ` ( E |`s ran U ) ) ) = ( dim ` ( E |`s ran U ) ) ) |
54 |
50 51 52 53
|
4syl |
|- ( ph -> ( 0 +e ( dim ` ( E |`s ran U ) ) ) = ( dim ` ( E |`s ran U ) ) ) |
55 |
15 48 54
|
3eqtrrd |
|- ( ph -> ( dim ` ( E |`s ran U ) ) = ( dim ` E ) ) |
56 |
1 2 3 10 55
|
dimlssid |
|- ( ph -> ran U = B ) |
57 |
|
df-fo |
|- ( U : B -onto-> B <-> ( U Fn B /\ ran U = B ) ) |
58 |
8 56 57
|
sylanbrc |
|- ( ph -> U : B -onto-> B ) |
59 |
|
df-f1o |
|- ( U : B -1-1-onto-> B <-> ( U : B -1-1-> B /\ U : B -onto-> B ) ) |
60 |
5 58 59
|
sylanbrc |
|- ( ph -> U : B -1-1-onto-> B ) |