Step |
Hyp |
Ref |
Expression |
1 |
|
lactlmhm.b |
|- B = ( Base ` A ) |
2 |
|
lactlmhm.m |
|- .x. = ( .r ` A ) |
3 |
|
lactlmhm.f |
|- F = ( x e. B |-> ( C .x. x ) ) |
4 |
|
lactlmhm.a |
|- ( ph -> A e. AssAlg ) |
5 |
|
lactlmhm.c |
|- ( ph -> C e. B ) |
6 |
|
assalmod |
|- ( A e. AssAlg -> A e. LMod ) |
7 |
4 6
|
syl |
|- ( ph -> A e. LMod ) |
8 |
|
assaring |
|- ( A e. AssAlg -> A e. Ring ) |
9 |
4 8
|
syl |
|- ( ph -> A e. Ring ) |
10 |
1 2
|
ringlghm |
|- ( ( A e. Ring /\ C e. B ) -> ( x e. B |-> ( C .x. x ) ) e. ( A GrpHom A ) ) |
11 |
9 5 10
|
syl2anc |
|- ( ph -> ( x e. B |-> ( C .x. x ) ) e. ( A GrpHom A ) ) |
12 |
3 11
|
eqeltrid |
|- ( ph -> F e. ( A GrpHom A ) ) |
13 |
|
eqidd |
|- ( ph -> ( Scalar ` A ) = ( Scalar ` A ) ) |
14 |
4
|
ad2antrr |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> A e. AssAlg ) |
15 |
|
simplr |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> a e. ( Base ` ( Scalar ` A ) ) ) |
16 |
5
|
ad2antrr |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> C e. B ) |
17 |
|
simpr |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> b e. B ) |
18 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
19 |
|
eqid |
|- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
20 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
21 |
1 18 19 20 2
|
assaassr |
|- ( ( A e. AssAlg /\ ( a e. ( Base ` ( Scalar ` A ) ) /\ C e. B /\ b e. B ) ) -> ( C .x. ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( C .x. b ) ) ) |
22 |
14 15 16 17 21
|
syl13anc |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( C .x. ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( C .x. b ) ) ) |
23 |
|
oveq2 |
|- ( x = ( a ( .s ` A ) b ) -> ( C .x. x ) = ( C .x. ( a ( .s ` A ) b ) ) ) |
24 |
7
|
ad2antrr |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> A e. LMod ) |
25 |
1 18 20 19 24 15 17
|
lmodvscld |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( a ( .s ` A ) b ) e. B ) |
26 |
|
ovexd |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( C .x. ( a ( .s ` A ) b ) ) e. _V ) |
27 |
3 23 25 26
|
fvmptd3 |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( F ` ( a ( .s ` A ) b ) ) = ( C .x. ( a ( .s ` A ) b ) ) ) |
28 |
|
oveq2 |
|- ( x = b -> ( C .x. x ) = ( C .x. b ) ) |
29 |
|
ovexd |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( C .x. b ) e. _V ) |
30 |
3 28 17 29
|
fvmptd3 |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( F ` b ) = ( C .x. b ) ) |
31 |
30
|
oveq2d |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( a ( .s ` A ) ( F ` b ) ) = ( a ( .s ` A ) ( C .x. b ) ) ) |
32 |
22 27 31
|
3eqtr4d |
|- ( ( ( ph /\ a e. ( Base ` ( Scalar ` A ) ) ) /\ b e. B ) -> ( F ` ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( F ` b ) ) ) |
33 |
32
|
anasss |
|- ( ( ph /\ ( a e. ( Base ` ( Scalar ` A ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( F ` b ) ) ) |
34 |
33
|
ralrimivva |
|- ( ph -> A. a e. ( Base ` ( Scalar ` A ) ) A. b e. B ( F ` ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( F ` b ) ) ) |
35 |
18 18 19 1 20 20
|
islmhm |
|- ( F e. ( A LMHom A ) <-> ( ( A e. LMod /\ A e. LMod ) /\ ( F e. ( A GrpHom A ) /\ ( Scalar ` A ) = ( Scalar ` A ) /\ A. a e. ( Base ` ( Scalar ` A ) ) A. b e. B ( F ` ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( F ` b ) ) ) ) ) |
36 |
35
|
biimpri |
|- ( ( ( A e. LMod /\ A e. LMod ) /\ ( F e. ( A GrpHom A ) /\ ( Scalar ` A ) = ( Scalar ` A ) /\ A. a e. ( Base ` ( Scalar ` A ) ) A. b e. B ( F ` ( a ( .s ` A ) b ) ) = ( a ( .s ` A ) ( F ` b ) ) ) ) -> F e. ( A LMHom A ) ) |
37 |
7 7 12 13 34 36
|
syl23anc |
|- ( ph -> F e. ( A LMHom A ) ) |