| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lactlmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 2 |
|
lactlmhm.m |
⊢ · = ( .r ‘ 𝐴 ) |
| 3 |
|
lactlmhm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 · 𝑥 ) ) |
| 4 |
|
lactlmhm.a |
⊢ ( 𝜑 → 𝐴 ∈ AssAlg ) |
| 5 |
|
lactlmhm.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 6 |
|
assalmod |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ LMod ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 8 |
|
assaring |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ Ring ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
| 10 |
1 2
|
ringlghm |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝐶 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 · 𝑥 ) ) ∈ ( 𝐴 GrpHom 𝐴 ) ) |
| 11 |
9 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 · 𝑥 ) ) ∈ ( 𝐴 GrpHom 𝐴 ) ) |
| 12 |
3 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 GrpHom 𝐴 ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) ) |
| 14 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ AssAlg ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 16 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 21 |
1 18 19 20 2
|
assaassr |
⊢ ( ( 𝐴 ∈ AssAlg ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝐶 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐶 · ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐶 · 𝑏 ) ) ) |
| 22 |
14 15 16 17 21
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 · ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐶 · 𝑏 ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) → ( 𝐶 · 𝑥 ) = ( 𝐶 · ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) ) |
| 24 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ LMod ) |
| 25 |
1 18 20 19 24 15 17
|
lmodvscld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ∈ 𝐵 ) |
| 26 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 · ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) ∈ V ) |
| 27 |
3 23 25 26
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝐶 · ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑏 ) ) |
| 29 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐶 · 𝑏 ) ∈ V ) |
| 30 |
3 28 17 29
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐶 · 𝑏 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐶 · 𝑏 ) ) ) |
| 32 |
22 27 31
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 33 |
32
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 34 |
33
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 35 |
18 18 19 1 20 20
|
islmhm |
⊢ ( 𝐹 ∈ ( 𝐴 LMHom 𝐴 ) ↔ ( ( 𝐴 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝐴 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 36 |
35
|
biimpri |
⊢ ( ( ( 𝐴 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝐴 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑏 ) ) ) ) → 𝐹 ∈ ( 𝐴 LMHom 𝐴 ) ) |
| 37 |
7 7 12 13 34 36
|
syl23anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 LMHom 𝐴 ) ) |