Step |
Hyp |
Ref |
Expression |
1 |
|
lactlmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
2 |
|
lactlmhm.m |
⊢ · = ( .r ‘ 𝐴 ) |
3 |
|
lactlmhm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 · 𝑥 ) ) |
4 |
|
lactlmhm.a |
⊢ ( 𝜑 → 𝐴 ∈ AssAlg ) |
5 |
|
assalactf1o.1 |
⊢ 𝐸 = ( RLReg ‘ 𝐴 ) |
6 |
|
assalactf1o.k |
⊢ 𝐾 = ( Scalar ‘ 𝐴 ) |
7 |
|
assalactf1o.2 |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
8 |
|
assalactf1o.3 |
⊢ ( 𝜑 → ( dim ‘ 𝐴 ) ∈ ℕ0 ) |
9 |
|
assalactf1o.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐸 ) |
10 |
|
assalmod |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ LMod ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
12 |
6
|
islvec |
⊢ ( 𝐴 ∈ LVec ↔ ( 𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing ) ) |
13 |
11 7 12
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ LVec ) |
14 |
5 1
|
rrgss |
⊢ 𝐸 ⊆ 𝐵 |
15 |
14 9
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
16 |
1 2 3 4 15
|
lactlmhm |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 LMHom 𝐴 ) ) |
17 |
|
assaring |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ Ring ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ Ring ) |
20 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
22 |
1 2 19 20 21
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 · 𝑥 ) ∈ 𝐵 ) |
23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐶 · 𝑥 ) ∈ 𝐵 ) |
24 |
18
|
ringgrpd |
⊢ ( 𝜑 → 𝐴 ∈ Grp ) |
25 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝐴 ∈ Grp ) |
26 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝑥 ∈ 𝐵 ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝑦 ∈ 𝐵 ) |
28 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝐶 ∈ 𝐸 ) |
29 |
|
eqid |
⊢ ( -g ‘ 𝐴 ) = ( -g ‘ 𝐴 ) |
30 |
1 29 25 26 27
|
grpsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ∈ 𝐵 ) |
31 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝐴 ∈ Ring ) |
32 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝐶 ∈ 𝐵 ) |
33 |
1 2 29 31 32 26 27
|
ringsubdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝐶 · ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) = ( ( 𝐶 · 𝑥 ) ( -g ‘ 𝐴 ) ( 𝐶 · 𝑦 ) ) ) |
34 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝐶 · 𝑥 ) ∈ 𝐵 ) |
35 |
1 2 31 32 27
|
ringcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝐶 · 𝑦 ) ∈ 𝐵 ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
38 |
1 37 29
|
grpsubeq0 |
⊢ ( ( 𝐴 ∈ Grp ∧ ( 𝐶 · 𝑥 ) ∈ 𝐵 ∧ ( 𝐶 · 𝑦 ) ∈ 𝐵 ) → ( ( ( 𝐶 · 𝑥 ) ( -g ‘ 𝐴 ) ( 𝐶 · 𝑦 ) ) = ( 0g ‘ 𝐴 ) ↔ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) ) |
39 |
38
|
biimpar |
⊢ ( ( ( 𝐴 ∈ Grp ∧ ( 𝐶 · 𝑥 ) ∈ 𝐵 ∧ ( 𝐶 · 𝑦 ) ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( ( 𝐶 · 𝑥 ) ( -g ‘ 𝐴 ) ( 𝐶 · 𝑦 ) ) = ( 0g ‘ 𝐴 ) ) |
40 |
25 34 35 36 39
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( ( 𝐶 · 𝑥 ) ( -g ‘ 𝐴 ) ( 𝐶 · 𝑦 ) ) = ( 0g ‘ 𝐴 ) ) |
41 |
33 40
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝐶 · ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) = ( 0g ‘ 𝐴 ) ) |
42 |
5 1 2 37
|
rrgeq0i |
⊢ ( ( 𝐶 ∈ 𝐸 ∧ ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ∈ 𝐵 ) → ( ( 𝐶 · ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) = ( 0g ‘ 𝐴 ) → ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) = ( 0g ‘ 𝐴 ) ) ) |
43 |
42
|
imp |
⊢ ( ( ( 𝐶 ∈ 𝐸 ∧ ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ∈ 𝐵 ) ∧ ( 𝐶 · ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) ) = ( 0g ‘ 𝐴 ) ) → ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) = ( 0g ‘ 𝐴 ) ) |
44 |
28 30 41 43
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) = ( 0g ‘ 𝐴 ) ) |
45 |
1 37 29
|
grpsubeq0 |
⊢ ( ( 𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) = ( 0g ‘ 𝐴 ) ↔ 𝑥 = 𝑦 ) ) |
46 |
45
|
biimpa |
⊢ ( ( ( 𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ( -g ‘ 𝐴 ) 𝑦 ) = ( 0g ‘ 𝐴 ) ) → 𝑥 = 𝑦 ) |
47 |
25 26 27 44 46
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) → 𝑥 = 𝑦 ) |
48 |
47
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) → 𝑥 = 𝑦 ) ) |
49 |
48
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) → 𝑥 = 𝑦 ) ) |
50 |
49
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) → 𝑥 = 𝑦 ) ) |
51 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) ) |
52 |
3 51
|
f1mpt |
⊢ ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐵 ( 𝐶 · 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
53 |
23 50 52
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
54 |
1 13 8 16 53
|
lvecendof1f1o |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |