| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecendof1f1o.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
lvecendof1f1o.e |
⊢ ( 𝜑 → 𝐸 ∈ LVec ) |
| 3 |
|
lvecendof1f1o.d |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) ∈ ℕ0 ) |
| 4 |
|
lvecendof1f1o.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) ) |
| 5 |
|
lvecendof1f1o.1 |
⊢ ( 𝜑 → 𝑈 : 𝐵 –1-1→ 𝐵 ) |
| 6 |
1 1
|
lmhmf |
⊢ ( 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) → 𝑈 : 𝐵 ⟶ 𝐵 ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑈 : 𝐵 ⟶ 𝐵 ) |
| 8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝑈 Fn 𝐵 ) |
| 9 |
|
lmhmrnlss |
⊢ ( 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) → ran 𝑈 ∈ ( LSubSp ‘ 𝐸 ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → ran 𝑈 ∈ ( LSubSp ‘ 𝐸 ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 12 |
|
eqid |
⊢ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) = ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) |
| 13 |
|
eqid |
⊢ ( 𝐸 ↾s ran 𝑈 ) = ( 𝐸 ↾s ran 𝑈 ) |
| 14 |
11 12 13
|
dimkerim |
⊢ ( ( 𝐸 ∈ LVec ∧ 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) ) → ( dim ‘ 𝐸 ) = ( ( dim ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) +𝑒 ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) ) |
| 15 |
2 4 14
|
syl2anc |
⊢ ( 𝜑 → ( dim ‘ 𝐸 ) = ( ( dim ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) +𝑒 ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) ) |
| 16 |
|
eqid |
⊢ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) = ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) |
| 17 |
|
eqid |
⊢ ( LSubSp ‘ 𝐸 ) = ( LSubSp ‘ 𝐸 ) |
| 18 |
16 11 17
|
lmhmkerlss |
⊢ ( 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ∈ ( LSubSp ‘ 𝐸 ) ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ∈ ( LSubSp ‘ 𝐸 ) ) |
| 20 |
12 17
|
lsslvec |
⊢ ( ( 𝐸 ∈ LVec ∧ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ∈ ( LSubSp ‘ 𝐸 ) ) → ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ∈ LVec ) |
| 21 |
2 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ∈ LVec ) |
| 22 |
4
|
lmhmghmd |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) ) |
| 23 |
1 1 11 11
|
kerf1ghm |
⊢ ( 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) → ( 𝑈 : 𝐵 –1-1→ 𝐵 ↔ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) = { ( 0g ‘ 𝐸 ) } ) ) |
| 24 |
23
|
biimpa |
⊢ ( ( 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) ∧ 𝑈 : 𝐵 –1-1→ 𝐵 ) → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) = { ( 0g ‘ 𝐸 ) } ) |
| 25 |
22 5 24
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) = { ( 0g ‘ 𝐸 ) } ) |
| 26 |
|
cnvimass |
⊢ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ⊆ dom 𝑈 |
| 27 |
26 7
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ⊆ 𝐵 ) |
| 28 |
12 1
|
ressbas2 |
⊢ ( ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ⊆ 𝐵 → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) = ( Base ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) = ( Base ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) ) |
| 30 |
2
|
lvecgrpd |
⊢ ( 𝜑 → 𝐸 ∈ Grp ) |
| 31 |
30
|
grpmndd |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
| 32 |
1 11
|
mndidcl |
⊢ ( 𝐸 ∈ Mnd → ( 0g ‘ 𝐸 ) ∈ 𝐵 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ 𝐵 ) |
| 34 |
11 11
|
ghmid |
⊢ ( 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) → ( 𝑈 ‘ ( 0g ‘ 𝐸 ) ) = ( 0g ‘ 𝐸 ) ) |
| 35 |
22 34
|
syl |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 0g ‘ 𝐸 ) ) = ( 0g ‘ 𝐸 ) ) |
| 36 |
|
fvex |
⊢ ( 0g ‘ 𝐸 ) ∈ V |
| 37 |
36
|
snid |
⊢ ( 0g ‘ 𝐸 ) ∈ { ( 0g ‘ 𝐸 ) } |
| 38 |
35 37
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 0g ‘ 𝐸 ) ) ∈ { ( 0g ‘ 𝐸 ) } ) |
| 39 |
8 33 38
|
elpreimad |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) |
| 40 |
12 1 11
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ ( 0g ‘ 𝐸 ) ∈ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ∧ ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ⊆ 𝐵 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) ) |
| 41 |
31 39 27 40
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) ) |
| 42 |
41
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐸 ) } = { ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) } ) |
| 43 |
25 29 42
|
3eqtr3d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = { ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) } ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) |
| 45 |
44
|
lvecdim0 |
⊢ ( ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ∈ LVec → ( ( dim ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = 0 ↔ ( Base ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = { ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) } ) ) |
| 46 |
45
|
biimpar |
⊢ ( ( ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ∈ LVec ∧ ( Base ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = { ( 0g ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) } ) → ( dim ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = 0 ) |
| 47 |
21 43 46
|
syl2anc |
⊢ ( 𝜑 → ( dim ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) = 0 ) |
| 48 |
47
|
oveq1d |
⊢ ( 𝜑 → ( ( dim ‘ ( 𝐸 ↾s ( ◡ 𝑈 “ { ( 0g ‘ 𝐸 ) } ) ) ) +𝑒 ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) = ( 0 +𝑒 ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) ) |
| 49 |
13 17
|
lsslvec |
⊢ ( ( 𝐸 ∈ LVec ∧ ran 𝑈 ∈ ( LSubSp ‘ 𝐸 ) ) → ( 𝐸 ↾s ran 𝑈 ) ∈ LVec ) |
| 50 |
2 10 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s ran 𝑈 ) ∈ LVec ) |
| 51 |
|
dimcl |
⊢ ( ( 𝐸 ↾s ran 𝑈 ) ∈ LVec → ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ∈ ℕ0* ) |
| 52 |
|
xnn0xr |
⊢ ( ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ∈ ℕ0* → ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ∈ ℝ* ) |
| 53 |
|
xaddlid |
⊢ ( ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ∈ ℝ* → ( 0 +𝑒 ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) = ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) |
| 54 |
50 51 52 53
|
4syl |
⊢ ( 𝜑 → ( 0 +𝑒 ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) = ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) ) |
| 55 |
15 48 54
|
3eqtrrd |
⊢ ( 𝜑 → ( dim ‘ ( 𝐸 ↾s ran 𝑈 ) ) = ( dim ‘ 𝐸 ) ) |
| 56 |
1 2 3 10 55
|
dimlssid |
⊢ ( 𝜑 → ran 𝑈 = 𝐵 ) |
| 57 |
|
df-fo |
⊢ ( 𝑈 : 𝐵 –onto→ 𝐵 ↔ ( 𝑈 Fn 𝐵 ∧ ran 𝑈 = 𝐵 ) ) |
| 58 |
8 56 57
|
sylanbrc |
⊢ ( 𝜑 → 𝑈 : 𝐵 –onto→ 𝐵 ) |
| 59 |
|
df-f1o |
⊢ ( 𝑈 : 𝐵 –1-1-onto→ 𝐵 ↔ ( 𝑈 : 𝐵 –1-1→ 𝐵 ∧ 𝑈 : 𝐵 –onto→ 𝐵 ) ) |
| 60 |
5 58 59
|
sylanbrc |
⊢ ( 𝜑 → 𝑈 : 𝐵 –1-1-onto→ 𝐵 ) |