Metamath Proof Explorer


Theorem lvecendof1f1o

Description: If an endomorphism U of a vector space E of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in BourbakiAlg1 p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses lvecendof1f1o.b 𝐵 = ( Base ‘ 𝐸 )
lvecendof1f1o.e ( 𝜑𝐸 ∈ LVec )
lvecendof1f1o.d ( 𝜑 → ( dim ‘ 𝐸 ) ∈ ℕ0 )
lvecendof1f1o.u ( 𝜑𝑈 ∈ ( 𝐸 LMHom 𝐸 ) )
lvecendof1f1o.1 ( 𝜑𝑈 : 𝐵1-1𝐵 )
Assertion lvecendof1f1o ( 𝜑𝑈 : 𝐵1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 lvecendof1f1o.b 𝐵 = ( Base ‘ 𝐸 )
2 lvecendof1f1o.e ( 𝜑𝐸 ∈ LVec )
3 lvecendof1f1o.d ( 𝜑 → ( dim ‘ 𝐸 ) ∈ ℕ0 )
4 lvecendof1f1o.u ( 𝜑𝑈 ∈ ( 𝐸 LMHom 𝐸 ) )
5 lvecendof1f1o.1 ( 𝜑𝑈 : 𝐵1-1𝐵 )
6 1 1 lmhmf ( 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) → 𝑈 : 𝐵𝐵 )
7 4 6 syl ( 𝜑𝑈 : 𝐵𝐵 )
8 7 ffnd ( 𝜑𝑈 Fn 𝐵 )
9 lmhmrnlss ( 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) → ran 𝑈 ∈ ( LSubSp ‘ 𝐸 ) )
10 4 9 syl ( 𝜑 → ran 𝑈 ∈ ( LSubSp ‘ 𝐸 ) )
11 eqid ( 0g𝐸 ) = ( 0g𝐸 )
12 eqid ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) = ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) )
13 eqid ( 𝐸s ran 𝑈 ) = ( 𝐸s ran 𝑈 )
14 11 12 13 dimkerim ( ( 𝐸 ∈ LVec ∧ 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) ) → ( dim ‘ 𝐸 ) = ( ( dim ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) +𝑒 ( dim ‘ ( 𝐸s ran 𝑈 ) ) ) )
15 2 4 14 syl2anc ( 𝜑 → ( dim ‘ 𝐸 ) = ( ( dim ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) +𝑒 ( dim ‘ ( 𝐸s ran 𝑈 ) ) ) )
16 eqid ( 𝑈 “ { ( 0g𝐸 ) } ) = ( 𝑈 “ { ( 0g𝐸 ) } )
17 eqid ( LSubSp ‘ 𝐸 ) = ( LSubSp ‘ 𝐸 )
18 16 11 17 lmhmkerlss ( 𝑈 ∈ ( 𝐸 LMHom 𝐸 ) → ( 𝑈 “ { ( 0g𝐸 ) } ) ∈ ( LSubSp ‘ 𝐸 ) )
19 4 18 syl ( 𝜑 → ( 𝑈 “ { ( 0g𝐸 ) } ) ∈ ( LSubSp ‘ 𝐸 ) )
20 12 17 lsslvec ( ( 𝐸 ∈ LVec ∧ ( 𝑈 “ { ( 0g𝐸 ) } ) ∈ ( LSubSp ‘ 𝐸 ) ) → ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ∈ LVec )
21 2 19 20 syl2anc ( 𝜑 → ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ∈ LVec )
22 4 lmhmghmd ( 𝜑𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) )
23 1 1 11 11 kerf1ghm ( 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) → ( 𝑈 : 𝐵1-1𝐵 ↔ ( 𝑈 “ { ( 0g𝐸 ) } ) = { ( 0g𝐸 ) } ) )
24 23 biimpa ( ( 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) ∧ 𝑈 : 𝐵1-1𝐵 ) → ( 𝑈 “ { ( 0g𝐸 ) } ) = { ( 0g𝐸 ) } )
25 22 5 24 syl2anc ( 𝜑 → ( 𝑈 “ { ( 0g𝐸 ) } ) = { ( 0g𝐸 ) } )
26 cnvimass ( 𝑈 “ { ( 0g𝐸 ) } ) ⊆ dom 𝑈
27 26 7 fssdm ( 𝜑 → ( 𝑈 “ { ( 0g𝐸 ) } ) ⊆ 𝐵 )
28 12 1 ressbas2 ( ( 𝑈 “ { ( 0g𝐸 ) } ) ⊆ 𝐵 → ( 𝑈 “ { ( 0g𝐸 ) } ) = ( Base ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) )
29 27 28 syl ( 𝜑 → ( 𝑈 “ { ( 0g𝐸 ) } ) = ( Base ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) )
30 2 lvecgrpd ( 𝜑𝐸 ∈ Grp )
31 30 grpmndd ( 𝜑𝐸 ∈ Mnd )
32 1 11 mndidcl ( 𝐸 ∈ Mnd → ( 0g𝐸 ) ∈ 𝐵 )
33 31 32 syl ( 𝜑 → ( 0g𝐸 ) ∈ 𝐵 )
34 11 11 ghmid ( 𝑈 ∈ ( 𝐸 GrpHom 𝐸 ) → ( 𝑈 ‘ ( 0g𝐸 ) ) = ( 0g𝐸 ) )
35 22 34 syl ( 𝜑 → ( 𝑈 ‘ ( 0g𝐸 ) ) = ( 0g𝐸 ) )
36 fvex ( 0g𝐸 ) ∈ V
37 36 snid ( 0g𝐸 ) ∈ { ( 0g𝐸 ) }
38 35 37 eqeltrdi ( 𝜑 → ( 𝑈 ‘ ( 0g𝐸 ) ) ∈ { ( 0g𝐸 ) } )
39 8 33 38 elpreimad ( 𝜑 → ( 0g𝐸 ) ∈ ( 𝑈 “ { ( 0g𝐸 ) } ) )
40 12 1 11 ress0g ( ( 𝐸 ∈ Mnd ∧ ( 0g𝐸 ) ∈ ( 𝑈 “ { ( 0g𝐸 ) } ) ∧ ( 𝑈 “ { ( 0g𝐸 ) } ) ⊆ 𝐵 ) → ( 0g𝐸 ) = ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) )
41 31 39 27 40 syl3anc ( 𝜑 → ( 0g𝐸 ) = ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) )
42 41 sneqd ( 𝜑 → { ( 0g𝐸 ) } = { ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) } )
43 25 29 42 3eqtr3d ( 𝜑 → ( Base ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = { ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) } )
44 eqid ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) )
45 44 lvecdim0 ( ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ∈ LVec → ( ( dim ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = 0 ↔ ( Base ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = { ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) } ) )
46 45 biimpar ( ( ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ∈ LVec ∧ ( Base ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = { ( 0g ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) } ) → ( dim ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = 0 )
47 21 43 46 syl2anc ( 𝜑 → ( dim ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) = 0 )
48 47 oveq1d ( 𝜑 → ( ( dim ‘ ( 𝐸s ( 𝑈 “ { ( 0g𝐸 ) } ) ) ) +𝑒 ( dim ‘ ( 𝐸s ran 𝑈 ) ) ) = ( 0 +𝑒 ( dim ‘ ( 𝐸s ran 𝑈 ) ) ) )
49 13 17 lsslvec ( ( 𝐸 ∈ LVec ∧ ran 𝑈 ∈ ( LSubSp ‘ 𝐸 ) ) → ( 𝐸s ran 𝑈 ) ∈ LVec )
50 2 10 49 syl2anc ( 𝜑 → ( 𝐸s ran 𝑈 ) ∈ LVec )
51 dimcl ( ( 𝐸s ran 𝑈 ) ∈ LVec → ( dim ‘ ( 𝐸s ran 𝑈 ) ) ∈ ℕ0* )
52 xnn0xr ( ( dim ‘ ( 𝐸s ran 𝑈 ) ) ∈ ℕ0* → ( dim ‘ ( 𝐸s ran 𝑈 ) ) ∈ ℝ* )
53 xaddlid ( ( dim ‘ ( 𝐸s ran 𝑈 ) ) ∈ ℝ* → ( 0 +𝑒 ( dim ‘ ( 𝐸s ran 𝑈 ) ) ) = ( dim ‘ ( 𝐸s ran 𝑈 ) ) )
54 50 51 52 53 4syl ( 𝜑 → ( 0 +𝑒 ( dim ‘ ( 𝐸s ran 𝑈 ) ) ) = ( dim ‘ ( 𝐸s ran 𝑈 ) ) )
55 15 48 54 3eqtrrd ( 𝜑 → ( dim ‘ ( 𝐸s ran 𝑈 ) ) = ( dim ‘ 𝐸 ) )
56 1 2 3 10 55 dimlssid ( 𝜑 → ran 𝑈 = 𝐵 )
57 df-fo ( 𝑈 : 𝐵onto𝐵 ↔ ( 𝑈 Fn 𝐵 ∧ ran 𝑈 = 𝐵 ) )
58 8 56 57 sylanbrc ( 𝜑𝑈 : 𝐵onto𝐵 )
59 df-f1o ( 𝑈 : 𝐵1-1-onto𝐵 ↔ ( 𝑈 : 𝐵1-1𝐵𝑈 : 𝐵onto𝐵 ) )
60 5 58 59 sylanbrc ( 𝜑𝑈 : 𝐵1-1-onto𝐵 )